Object-Oriented .aMD

Application Development with
VisualAge
for C++ for OS/2

Full-function Evaluation Copies

of VisualAge for C++ for OS/2

and DB2/2 on CD-ROM N

Step-by-Step Implementation Guide for |

Real Estate Multimedia Application R ctter

- International Technical Support Organization

S "-.H

- .. .I...... .l_M. .
..1-...
._,:I
._“_.

Object-Oriented Application
Development with

VisualAge for C++ for OS/2

The VisualAge Series

Bitterer, Brassard, Nadal, and Wong
VisualAge and Transaction Processing in a Client/Server Environment

Bitterer, Hamada, Oosthuizen, Porciello, and Rambek
AS/400 Application Development with VisualAge for Smalltalk

Carrel-Billiard, Jakab, Mauny, and Vetter
Object-Oriented Application Development with VisualAge for C++ for OS/2

Fang, Chu, and Weyerhauser
VisualAge for Smalltalk SOMsupport: Developing Distributed Object Applications

Fang, Guyet, Haven, Vilmi, and Eckmann
VisualAge for Smalltalk Distributed: Developing Distributed Object Applications

Object-Oriented Application
Development with

VisualAge for C++ for OS/2

Marc Carrel-Billiard
Peter Jakab

Isabelle Mauny
Rainer Vetter

NS S eV

INTERNATIONAL TECHNICAL SUPPORT ORGANIZATION
SAN JOSE, CALIFORNIA 95120

PRENTICE HALL PTR
UPPER SADDLE RIVER, NEW JERSEY 07458

© Copyright International Business Machines Corporation 1995, 1996. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication, or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This edition applies to Version 3.0 of the VisualAge for C++ for OS/2 product set, and to all subsequent releases and mod-
ifications until otherwise indicated in new editions.

Comments about ITSO Technical Bulletins may be addressed to:
IBM Corporation ITSO, 471/80-E2, 650 Harry Road, San Jose, California 95120-6099

For information about redbooks:
http://www.redbooks .ibm.com/redbooks

Send comments to:
redbooks@vnet . ibm.com

Published by Prentice Hall PTR
Prentice-Hall, Inc.

A Simon & Schuster Company
Upper Saddle River, NJ 07458
Acquisitions Editor: Michael E. Meehan

Manufacturing Manager: Alexis R. Heydt

Cover Design: Andreas Bitterer, Marc Carrel-Billiard, Design Source

Copy Editors: Maggie Cutler, Mary Lou Nohr

Production Supervision:Patti Guerrieri

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:

Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458
Phone: 800-382-3419; FAX: 201-236-7141; E-mail (Internet): corpsales@prenhall.com

For book and bookstore information

http://www.prenhall.com

Printed in the United States of America
10 9 8 7 6 5 4 3 2

ISBN 0-13-242447-9

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To my wife, Dominique, for her unfailing support and understanding
and to my children, Fanny and Thomas, for their patience and their
cheerful smiles. To my parents for giving me a passion.

Marc

This book is dedicated to my wife Mabel and my children Jessie and
Justin for their support during the summer of 1995 when I was absent
from home for long periods of time. Their love and understanding
made my participation in writing this book possible.

Peter

To teamwork and friendship that were our companions all along this
writing adventure. I dedicate this book to my family and all those who
can understand this little sentence: “A la Gaude!”.

Isabelle

To my family and all with whom we are joined together in friendship.

Rainer

Contents

Special Notices X1X
Preface. xxiil
What Makes This Book Different xxiii
How This Book Is Organized xxiii
Related Publications XXV
International Technical Support Organization Publications. XXVi
International Technical Support Organization on the World Wide Web (WWW). . xxvii
International Technical Support Organization on the Internet XXVil
VisualAge for C++ Support xXxXViii
About the Authors xxix
Acknowledgments. XXIX
Part 1. Introduction to the VisualAge for C++ Environment, 1
Chapter 1. VisualAge for C++ and Application Development. 3
Visual Programmingttt 4
Object Talko 6
OJECtS vt 6
ClaSSeS 7
Inheritance. 8
Encapsulation 10
Polymorphism 10
Object-Oriented Methods 11
Visual Modeling Technique 13
ANy SIS . . 14
Desigmn. 15
Implementation 15
Visual Programming with VisualAge for C++ 16
Chapter 2. Getting Started in a VisualAge for C++ Environment 19
Managing Your Project. 20
WorkFrame/2 Concepts. 20
Creating a Project with WorkFrame/2 23
Creating Composite Projects. 25
The MakeMake and Build Facilities 26
Customizing a Project with Build Smarts 26
Migrating Existing Projects 27
Generating Your Code 27
Using Visual Builder 27
Accessing DB2 Tables with Data Access Builder. 36
Building from Blocks 37
Building Your Application 40
Editing Your Code 40
Compiling. 41
Linking. ..o 45

vii

Understanding Your Code 46

Browsing Your C++ Hierarchy 47
Debugging Your Code. 51
Performance Analysis 54
Part 2. Developing with VisualAgefor C++. 59
Chapter 3. Analystsat Work 61
Collecting the Material. 62
Problem Domain. 63
Requirement Specifications. 64
Thread and Subplots 67
UseCase Model 68
User Interface Prototype 70
Defining Roles.o o 71
Patterns and Types 72
Finding Objects o 73
Class Dictionary and CRC Cards i 74
Defining Interactions and Relations 76
Defining Contexts.o 81
Chapter 4. Designersat Work. 83
System Designo 85
Partition Object Model into Subsystems 85
Map Subsystems to VisualAge for C++ Subapplications................... 86
Select the Implementing Platform 87
Define Data Placement and Data Processing. 88
Refine Contexts 88
Object Designo 89
Design the Solution Domain Classes 89
Design the Nonvisual Parts. 90
Design the GUI with the Visual Parts 91
Design the Persistent Data 92
Refining the Design Model. 92
Refining the Property Retrieving Scenario. 95
Refining the Property Creation Scenario 97
Refining the Property Update Scenario 101
Refining Roles 102
Part 3. Building the Visual Realty Application 105
Chapter 5. Setting Up the Development Environment 107
WorkFrame/2 Project Organization. 108
File Organization 109
Creating and Customizing the DACSPRJ Project 110
Adding the CPPSource File Type i i 112
Modifying the CSource File Type i i 112
Adding the C Compiler Action. i 113
Modifying the C++ Compiler Action 113

viii VisualAge for C++ for 0S/2

Changing SQL Precompile Action Flags 114

Changing Compilation and Linking Flags. 114
Setting the Build Facility Options 115
Creating and Customizing the Visual Realty Projects........... 115
Creating the Visual Realty Main and Subsystem Projects................ 115
Creating the Help Project 117
Customizing the Visual Realty Main and Subsystem Projects............. 118
Creating and Customizing the Dacslib Project. 123
Setting Up the Linking Flags 124
Creating a Library Definition File 124
Naming Conventions 124
Run-time Considerations. 125
Chapter 6. Mapping Relational Tables Using Data Access Builder 127
Mapping Tables to Parts 129
Parts Produced 135
Using Data Access Builder Parts with Visual Builder. 136
Chapter 7. Creating Visual Parts 143
AAddressView. ... 147
Tabbing from One Part to Another. 152
Promoting a Part Feature. 154
APTopertyViewo 156
Using a Notebook Control........ i, 157
Building the Pages of a Noteboook 158
APropertyCreateView 172
APropertyUpdateView 175
ADeleteDialogView.o 178
APropertySearchResultView 182
Using a Container 182
Adding Columns toa Container 185
APropertySearchParameterView 188
Using Check Box Control 189
Using Collection Combination-Box Control 189
AUpLoadView. 196
APropertyManagementView 199
Using Graphic Push Buttons 200
ALogonView 202
ARealSettingsView.o 206
ARealMainView 208
Chapter 8. Creating Nonvisual Parts. 213
AMarketingInfo e 214
BEvent Handler 220
Writing the Code for Your Event Handler Class 222
Creating a Class Interface Part from Your Event Handler Class........... 223
Using Your Keyboard Handler 224
Chapter 9. Connecting the Parts. 227
APropertyView 228

Contents ix

Selectinga Video File. 228

Adding Multimedia Features 230
Connecting a Nonvisual Parttoa Visual Part.......................... 233
Design Considerations. 235
APropertyCreateView. e 236
Using Variable Parts 243
Managing Database Connection 246
Adding Fly-over Helptoa Control 247
Passing a Parameter to a Connection. 248
Using Custom Logic. 249
APropertyUpdateView 251
Showing Exception in a Message Box. 259
Using Sample Parts. 259
Using the Member Function Connection 260
Updating a Window Title Dynamically. 264
ADeleteDialogView. 264
APropertySearchResultView 265
Selecting Properties from the Database............ 267
Retrieving Information Across Multiple Tables. 268
Using an Object Factory to Update the Database 271
Deleting a Propertyo 275
APropertyDelete 278
Using the Composition Editor to Build a Nonvisual Part................. 279
APropertySearchParameterView. 283
Managing the User Input 284
Building the Clause 285
Using a Message Box to Display the Clause 292
AUpLoadView 298
APropertyManagementView 302
ALOZONVIEW . .o 305
ARealSettingsView 305
ARealMainView 310
Logging on to the Database. 310
Accessing the Application Settings and the Property Subsystem. 313
Tearing Off an Attribute 316
Adding Help to Your Application. 318
Chapter 10. If You Want to Know More about Visual Builder... 323
Notification Framework Concepts. 323
How Visual Builder Uses the Notification Framework 324
Scenario for a Connection 325
Using Connections as Notifiers. i .. 329
From Classes to Nonvisual Parts in Visual Builder. 330
Describing the Part Interface 332
Modifying Your Code 336
When Parts Become ObServers.... 337

X VisualAge for C++ for OS/2

Appendix A. Installing the Application. 341

Appendix B. OMT Notation. 343
Appendix C. Database Definition 347
Appendix D. Class Dictionary 353
Visual Parts ... 354
Nonvisual Parts 354
Appendix E. Source Listings 357
BuildClause member function. 358
Flat File Classt e e e 358
GIOSSATY. . . . o oo 367
List of Abbreviations 377
Index 379

Contents Xi

Xii VisualAge for C++ for 0S/2

Figures

0O NoOUE D

A R I R R R OO W W W WL LW W WNRNDNRNDDDNDNDINDNDN M
NOOAONEOORNINRBN L, OCP AT ADNEOOOIRT A LBNEO

INheritance 9
VMT: A Complementary Approach to Object-Orientation 14
Interface to Alter Options for the VisualAge for C++ Compiler 21
Actions for the Edit Class ot 22
Project Smarts Catalog Window: Presentation Manager Application 24
Example of Composite Project 26
Primitive and Composite Parts 28
Sample Part Interface: SmartHouse 29
Sample Connections: SmartHouse Monitoring System 30
Visual Builder: Composition Editor 32
Part Interface Editor: Attribute Creation 33
defaultButtonsPanel Composite Part 34
Visual Builder: Class Editor 35
Database Access: From Mapping to Parts Generation 37
User Interface Class Library Architecture 38
LPEX: Source Formatting and Dynamic Error Detection 41
Language-Independent Implementation with SOM 45
Browser List Window: List Members with Inheritance 48
Browser Graph Window: Graph All Callers and Callees 49
Browser Graph Window: Graph All Includers 50
Visual Builder: Creating an Event-to-Member Connection 51
Breakpoint List Window 52
Call Nesting Diagram Window 55
Dynamic Call Graph Window 56
Statistics WIndow 57
Use Case Representationttt 68
Visual Realty Use Casesot e e 70
User Interface Samples 71
Event-Trace Diagram for the Record Property Use Case 78
State Transition Diagram of Property Status 79
Analysis Object Model of the Visual Realty Application 80
From Analysis to Design 84
Visual Realty System Platform 88
Design Model: Reveal Hidden Objects 90
Design Object Model of the Property Subsystem: First Cut 94
Event-Trace Diagram for the Property Search Use Case 96
Design Object Model of the Property Subsystem: Second Cut 97
Event-Trace Diagram for the Property Creation Use Case 98
Design Object Model of the Property Subsystem: Third Cut 100
Event-Trace Diagram for the Property Update Use Case 101
Design Object Model of the Property Subsystem: Fourth Cut 102
Project Organization for the Visual Realty Application 109
Files Organization for the VisualRealty Application 110
Change Action Dialog Window: C Compiler 113
The Visual Realty Project View 117
Data Access Builder Create Classes Window 131
Data Access Builder Main Window 132

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

66.
67.

69.
70.
71.
72.
73.
74.
75.
76.
77.

79.
80.
81.
82.
83.

85.
86.

88.
89.
90.
91.
92.
93.
94.
95.
96.

Xiv

Data Access Builder Page Attribute of the Settings Notebook 134
Pop-up Menu Generate Option i ... 135
General Connection Dialog Canvas 138
Simple Application with Data Access Builder 139
Visual Realty Applicationin Action 144
View Hierarchy 145
AAddressView Part 148
Tabbing Order for AAddressView 154
Promote EntryFieldStreetText Attribute of AAddressView 155
APropertyView Part 156
Notebook for APropertyView 157
Characteristics Page Using a Viewport 159
Event Handler List Box 160
Address Page 164
Description Page 165
Video Page o 166
Marketing Page 169
APropertyCreateView 173
APropertyUpdateView 176
ADeleteDialogView, 178
APropertySearchResultView 183
Container General Settings Page 185
Container Column General Settings Page 186
APropertySearchParameterView 189
Overriding the asString Method 191
IStringGeneratorForPropertyFn Declaration 192
AUpLoadView 197
APropertyManagementView 199
IGraphicPushButton General Settings Page 200
ALogonVIew 203
ARealSettingsView 206
ARealMainViewo 208
Creating AMarketingInfo Nonvisual Part 216
MarketingInfo Source Code Detail 219
UpperCaseKBDHandler Header File 222
UpperCaseKBDHandler Definition 223
Visual Builder: Importing kbdhdr.vbe Part Information File 224
Simple Application with Handler 225
Connections for Selectinga Video File 229
Building a Pop-up Menu for the Multiple-Line Edit Control 232
Connections between AMarketingInfo and Marketing Page 234
APropertyCreateView and Its Subparts 237
Attribute-to-Attribute Connections in APropertyCreateView 239
Event-to-Action Connections in APropertyCreateView 241
Connection Order for the Create Push Button 243
Simple View to Display Property Information 244
Reusing the Property View from Another Part: First Try 245
Simple Property View with Its Associated Variables 245
Reusing the Property View from Another Part: Second Try 246

VisualAge for C++ for OS/2

97.
98.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.

Attribute-to-Attribute Connections in APropertyUpdateView. 252

Event-to-Action Connections in APropertyUpdateView 256
Connection Order for the Update Push Button 258
DaysOnMarket Public Method Declaration 261
DaysOnMarket Public Method Definition 262
Member Function Dialog Box i i 263
Querying the Database i i 267
Retrieving Information from Multiple Tables 269
Updating a Propertyt 273
Deleting a Propertyo 275
Building APropertyDelete 278
Order of Connections for APropertyDelete 281
Detail of the Class Editorot e 282
Code to Generate deleteEventId i 282
Using APropertyDelete Part i 283
Number of Bedrooms Selection 285
Code Fragment of BuildClause Member Function 286
Subparts of APropertySearchParameterView 288
APropertySearchParameterView: The Big Picture 290
Using a Message Box to Display the Clause 293
Message Box Parameter 294
Using Message Box to Display a Warning Message 295
Message Box Displaying a Warning or Information Message 297
AUDPLoadVieWw . ..ot 299
Browsing the IProfile Part’s Features 302
APropertyManagementView i i 303
Structure of a Profile 306
ARealSettings Part 307
Logon to the Database i 310
Application Settings and Property Subsystem Access 313
Tearing Off an Attribute 317
Adding Help to the Application 320
Sample Window: Using an Attribute-to-Attribute Connection 324
Visual Builder Parts Initialization Process 327
Visual Builder Notification Flow 328
Sample2 Window: Using a Message Box for Exception Handling 329
Part-New Window: Creating a FlatFile Nonvisual Part 333
Part Interface Editor Window: Creating an Attribute Definition 334
The defaultButtons Composite Visual Part 337
OMT Notation: Object Model i 344
OMT Notation: State Diagramttt .. 345
BuildClause Member Function: Declaration 358
Flat File Class: HFile e 358
Flat File Class: HPP File o e 359
Flat File Class: CPP File o e 361
Flat File Class: HPV File e 363
Flat File Class: CPV File e 364

Figures Xv

Xvi VisualAge for C++ for 0S/2

Tables

© 0013 Ok 0N

SmartHouse Connectionsottt 31
Extended CRC Cards for Buyer 75
Extended CRC Cards for Property. i 76
Extended CRC Cards for Sale Transaction...... 76
Deliverables of Analysis and Design 84
Relational Table Identifiers 134
Constructing AAddressView Part o oo 150
Building APropertyView As a Notebook 157
Building the Characteristics Page o 161
Building the Address Page 164
Building the Description Page i 165
Building the Video Page 166
Building the Marketing Page 169
Promoted Features of APropertyView 171
Constructing APropertyCreateView Part o . 173
Constructing APropertyUpdateView Part. oo 176
Building ADeleteDialogView 180
Building APropertySearchResultView: Building a Container................ 183
Building APropertySearchResultView: Adding Container Columns........... 186
Building APropertySearchParameterView 192
Building AUpLoadView 197
Building APropertyManagementView.o 201
Building ALogonVIewot 203
Building ARealSettingsView 206
Building ARealMainView. B 209
Table Attributes e e e 216
Implementing a Video File Selection....... 229
Implementing Multimedia Features 230
Building a Pop-up Menu.o ovii 232
Using AMarketingInfo Part o 234
Adding Parts in APropertyCreateView 237
Making Attribute-to-Attribute Connections in APr operty(h eateView 239
Making Event-to-Action Connections in APropertyCreateView 242
Adding Subparts in APropertyUpdateView 252
Making Attribute-to-Attribute Connections in APropertyUpdateView. 254
Making Event-to-Action Connections in APropertyUpdateView.............. 256
Adding Parts to Query the Database. 267
Adding Parts to Retrieve Information from Multiple Tables 269
Connecting Parts to Retrieve Property Information........................ 270
Updating the Database. 273
Connecting Parts to Update Property Information. 274
Adding Parts to Delete a Property from the Database................... ... 276
Connecting Parts to Delete a Property from the Database 276
Adding Parts to Build APropertyDelete o 279
Connecting Parts to Build APropertyDelete 280
Adding Parts to Build APropertySearchParameterView 288
Connecting Parts to Build APropertySearchParameterView. 290
Using a Message Box to Display the Clause 293
Using Message Box to Display a Warning Message 295
Using Message Box to Display a Warning or Information Message 297

51.
52.
53.

55.
56.
57.
58.

60.

Xviii

Building AUpLoadView Part 299

Building APropertyManagementView Part. 303
Building ARealSettingsView Part 307
Adding Parts for the Logon Function. 311
Connecting Parts for the Logon Function, 311
Adding Parts to Access the Application Settings and Property Subsystem. 313
Connecting Parts for Property Subsystem and Settings Access. 315
Adding Help to the Application. oo, 320
Adding Help Resource Numbers for ARealMainView. 321
Adding Help Resource Numbers for ARealSettingsView 321

VisualAge for C++ for OS/2

Special Notices

This publication is intended to help project leaders to better under-
stand the VisualAge for C++ environment. The information in this
publication is not intended as the specification of any programming
interfaces that are provided by VisualAge for C++. See the PUBLICA-
TIONS section of the IBM Programming Announcement for VisualAge
for C++ for more information about what publications are considered
to be product documentation.

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM’s product, pro-
gram, or service may be used. Any functionally equivalent program
that does not infringe any of IBM’s intellectual property rights may be
used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the
equipment specified and is limited in application to those specific
hardware and software products and levels.

IBM may have patents or pending patent applications covering sub-
ject matter in this document. The furnishing of this document does not
give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500
Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to
any formal IBM test and is distributed AS IS. The information about
non-IBM (VENDOR) products in this manual has been supplied by the
vendor and IBM assumes no responsibility for its accuracy or com-
pleteness. The use of this information or the implementation of any of
these techniques is a customer responsibility and depends on the cus-
tomer’s ability to evaluate and integrate them into the customer’s
operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the
same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so
at their own risk.

Any performance data contained in this document was determined in
a controlled environment; therefore, the results that may be obtained
in other operating environments may vary significantly. Users of this
document should verify the applicable data for their specific environ-
ment.

Xix

XX

The following document contains examples of data and reports used in
daily business operations. To illustrate them as completely as possible,
the examples contain the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is
entirely coincidental.

Reference to PTF numbers that have not been released through the
normal distribution process does not imply general availability. The
purpose of including these reference numbers is to alert IBM custom-
ers to specific information relative to the implementation of the PTF

when it becomes available to each customer according to the normal
IBM PTF distribution process.

The following terms are trademarks of the International Business
Machines Corporation in the United States and/or other countries:

AIX® Common User Acess
CSet ++™ DB2™

CUA™ DB2/2™
Presentation Manager™ IBM®

Multimedia Presentation Manager/2™ 0S/2®
SOMobjects™ 0S/2 Warp®
Workplace Shell™ VisualAge™
WebExplorer™ WorkFrame/2™

The following terms are trademarks of other companies:
Windows™ is a trademark of Microsoft® Corporation.

PC Direct™ is a trademark of Ziff Communications Company and
is used by IBM Corporation under licence.

UNIX® is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

C-bus™ is a trademark of Collary, Inc.

1386™ and Pentium™ are trademarks of Intel Corporation.
Smalltalk™ is a trademark of Xerox Corporation.

Motif® is a registered trademark of Open Software Foundation.
Solaris® is registered trademark of Sun Microsystems.

Other trademarks are trademarks of their respective companies.

VisualAge for C++ for 0S/2

The icons used in this book are from the ClipArt Collection of the
CorelDRAW! Version 3 CDROM.

Some videos provided with the sample application are extracted from
the CDROM Nitro Explosive Animationen © 1994 Data Becker.

Special Notices xxi

xxii VisualAge for C++ for 0S/2

Preface

Welcome to the world of visual programming! With VisualAge for C++
for OS/2 you are ready to take the plunge into a radically new trend of
programming. If you have just bought your IBM VisualAge for C++
and you are dying to build your first serious application, you are read-
ing the right book. Indeed, learning VisualAge for C++ by example is
all this book is about. With VisualAge for C++, application construc-
tion has never been easier. Even the most complex applications can be
constructed from the large set of predefined parts from IBM Open
class. This book will show you how you can employ IBM VisualAge for
C++ for 0OS/2, Version 3.0 to implement software systems that have
been analyzed and designed by use of object-oriented methods. It
introduces the Visual Modeling Technique, a complementary approach
of existing object-oriented development techniques and illustrates how
this approach is applied to build a real application featuring relational
database support, video and vivid sound capacity, and numerous
graphical controls for a truly intuitive graphical user interface.

What Makes This Book Different

This book explains how to develop an application from the require-
ments specifications up to its coding with VisualAge for C++. Through-
out the different chapters, you will be guided to develop your static
and dynamic object models, using the Visual Modeling Technique.
Then, you will translate your models visually in Visual Builder and
generate their code automatically. This book is neither just a book on
methodology nor just a book on programming: it is both of them!

For the first time, a book takes you by hand to roll out a complete
application development cycle. So put on your cap of analyst-designer-
developer and get ready for a trip to the visual programming world!

How This Book Is Organized

This book consists of three parts. The first part (chapters 1 and 2)
introduces concepts and terms that go with visual programming and
object-orientation and gives a first insight into the VisualAge for C++
development environment. In the second part (chapters 3 and 4), we
present the sample application that you will build in the last part.
This part is devoted to analyzing and designing the static and
dynamic model of the application to ease its implementation with
VisualAge for C++. The third part (chapters 5, 6, 7, 8, 9, and 10)

xxiii

How This Book Is Organized

xxiv

makes up the majority of the book, teaching you how to use VisualAge
for C++ and its versatile tools to develop the sample application from
the ground up.

O Chapter 1, “VisualAge for C++ and Application Develop-

ment,” on page 3

The first chapter welcomes you to the visual age of application
development. You learn something about the new trends of soft-
ware construction that have emerged during the past few years
and how VisualAge for C++ meets these new challenges.

Chapter 2, “Getting Started in a VisualAge for C++ Environ-
ment,” on page 19

The second chapter provides an overview of all of the tools and fea-
tures that are part of the VisualAge for C++ package. We do not
intend to replace the user’s guides, but we want to give you the
keys that let you start off applying the tools.

Chapter 3, “Analysts at Work,” on page 61

This chapter and the next one invite you to play the role of a novel-
ist. We compare the analysis and design phases that precede the
implementation of a successful and neatly structured software
system to the introductory work to be done before writing a best-
seller. This chapter focuses on the analysis phase of our sample
application.

Chapter 4, “Designers at Work,” on page 83
This chapter concentrates on the design phase.

Chapter 5, “Setting Up the Development Environment,” cn
page 107

This chapter describes the preparatory work that paves the way
for well-organized software construction. You are advised how to
favorably initialize your new project in the WorkFrame/2 environ-
ment.

Chapter 6, “Mapping Relational Tables Using Data Access
Builder,” on page 127

This chapter and the next two feature the Visual Builder! During
the development of this book, we enjoyed most dealing with this
tool and assume that you also will get excited when you read how
we succeeded in implementing the sample application. You will
reap the best benefit if you duplicate the implementation process
step by step following our instructions. In this chapter, you will
use Data Access Builder to bring persistency to your application
and enable your objects to be stored in a relational database.

VisualAge for C++ for OS/2

Related Publications

0 Chapter 7, “Creating Visual Parts,” on page 143

This chapter will guide you in developing the graphical user inter-
face of your application, using the visual parts provided with
VisualAge for C++. Most of the parts are used in our sample appli-
cation, and you will be shown hints and tips to make the best of
them.

0 Chapter 8, “Creating Nonvisual Parts,” on page 213

Unlike other GUI development tools, Visual Builder allow you to
develop your business object as nonvisual parts. In this chapter,
we will show you how to develop the nonvisual parts that are used
in the sample application.

0 Chapter 9, “Connecting the Parts,” on page 227

Once you have built your visual and nonvisual parts, you are
ready to draw graphically the connections between them. In this
chapter, we show you how to connect your different parts to trigger
messages from one object to another to let your application per-
form. Then, you just need to generate automatically the C++
source code of your application and compile it! Throughout these
last three chapters, we will focus on showing how to map your
static and dynamic models from your detail phase to VisualAge for
C++.

0 Chapter 10, “If You Want to Know More about Visual
Builder...,” on page 323

If your curiosity is still not satisfied or if you want to take a closer
look at some technical details, you should keep on reading. This
chapter answers some questions that you did not ask before, such
as: What about the notification framework? or Can I reuse my leg-
acy code?

Related Publications

The publications listed in this section are considered particularly suit-
able for a more detailed discussion of the topics covered in this book.

Q Object-Oriented Software Engineering. A Use Case Driven
Approach by I. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard. Addison-Wesley Publishing Company, 1992. ISBN 0-201-
54435-0.

Q Object-Oriented Modeling and Design by J. Rumbaugh, M. Blaha,
W. Premerlani, F. Eddy, and W. Lorenson. Prentice Hall, 1991.
ISBN 0-13-630054-5.

Q Designing Object-Oriented Software by R. Wirfs-Brock, B. Wilker-
son, and L. Wiener. Prentice Hall, 1990.

Preface XXV

International Technical Support Organization Publications

Q Modern Structured Analysis by E. Yourdon. Yourdon Press, Engle-
wood Cliffs, New Jersey, 1989.

Q Object-Oriented Analysis and Design with Applications by G.
Booch. The Benjamin/Cummings Publishing Company, 1994.

Q Object Technology in Application Development by D. Tkach & R.
Puttick. Benjamin/Cumraings Publishing Company, 1994. ISBN 0-
8053-2572-5.

Q Visual Modeling Technique—Object Technology Using Visual Pro-
gramming by D. Tkach, W. Fang, and A. So. Benjamin/Cummings
Publishing Company, 1995. ISBN 0-8053-2574-3.

4 Effective C++: 50 Specific Ways to Improve Your Programs and
Designs by S. Meyers. Addison-Wesley, 1992.

O OS/2 C++ Class Library, Power GUI Programming with C Set++
by K. Leong, W. Law, R. Love, H. Tsuji, and B. Olson. VNR Com-
puter Library, 1993. ISBN 0-442-01795-2

C++ Programming Guide.

C++ User’s Guide.

Open Class Library User’s Guide.

Visual Builder User’s Guide.

Building VisualAge for C++ parts for Fun and Profit.

o0 o0 oo

International Technical Support Organization Publi-
cations

Q Object Technology in Application Development, GG24-4290.

Q Client/Server Computing: The Design and Coding of a Business
Application, GG24-3899.

A complete list of International Technical Support Organization publi-
cations, known as redbooks, with a brief description of each, can be
found as follows:

To obtain a catalog of ITSO redbooks, VNET users should type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

XXVi VisualAge for C++ for 0S/2

International Technical Support Organization on the World Wide Web (WWW)

A listing of all redbooks, sorted by category, can also be found on MKT-
TOOLS as ITSOPUB LISTALLX. This package is updated monthly.

—— How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs by using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or
by faxing 1-800-445-9269. Visa and Master Card are accepted. Outside the
USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

International Technical Support Organization on the
World Wide Web (WWW)

{ Internet users can find information about redbooks on the ITSO World
o Wide Web home page. To access the ITSO Web pages, point your Web
browser (such as WebExplorer™ from the OS/2 3.0 Warp BonusPak) to
P ' the following:

http://www.redbooks.ibm.com/redbooks

IBM internal users may also download redbooks or scan through red-
book abstracts. Point your web browser to the internal IBM Redbooks
home page:

http://w3.itso.ibm.com/redbooks/redbooks.html

International Technical Support Organization on the
Internet

If you do not have World Wide Web access, you can obtain the list of all
current redbooks through the Internet by anonymous FTP to:

ftp.almaden.ibm.com
cd redbooks
get itsopub.txt

The FTP server, ftp.almaden.ibm.com, also stores the sample from the

accompanying CD. To retrieve the sample files, issue the following
commands from the /redbooks directory:

Preface XXVii

VisualAge for C++ Support

cd GG242593
binary

get GG242593.EXE
ascii

get READ.ME

All users of ITSO publications are encouraged to provide feedback to
improve quality over time. Send questions about and feedback on red-
books to:

0 REDBOOK at WTSCPOK
0 REDBOOK@VNET.IBM.COM
Q USIB5FWN at IBMMAIL

VisualAge for C++ Support

VisualAge for C++ Service and Support is staffed by developers who
handle everything from how-to’s to complex technical problems. The
resolution may take the form of education, a workaround, or a fix to
the product (Corrective Service Diskette, CSDs).

There are several ways to contact the VisualAge for C++ Service and
Support department electronically:

0 CompuServe™ forums: GO OS2DF1, library section 4

Q Internet
e anonymous logon to site ftp.software.ibm.com, directory:
ps/products/visualagecpp/fixes/V30
e sample URL: ftp:/ftp.software.ibm.com/ps/products/visu-
alagecpp/fixes/v30

Q Talklink (0S/2 Selected Fixes Area)
e 1-800-547-1283 for information (USA)
e 1-800-465-7999 x228 for information (Canada)

O Developer’s Connection (DEVCON) CD
e Ordering information: 1-800-561-5293 (Canada) and 1-800-
6DE-VCON (USA)
e See also: http://www.austin.ibm.com/developer/programs/Dev-
Con/OS2/fagAE.html for world-wide ordering information

a IBM PC Co. BBS
e 1-919-517-0001 8,N,1
e 1-800-772-2227 for information

xxviii VisualAge for C++ for 0S/2

About the Authors

About the Authors

Marc Carrel-Billiard, from IBM France, works at the IBM Interna-
tional Technical Support Organization in San Jose, California. You can
reach him by e-mail at carrel@vnet.ibm.com.

Peter Jakab works for the IBM Software Solutions Laboratory in Tor-
onto Canada. You can reach him by e-mail at pjakab@vnet.ibm.com.

Isabelle Mauny works in La Gaude (France) for the IBM EMEA Soft-
ware Technical Support. You can reach her by e-mail at isa-
mauny@vnet.ibm.com.

Rainer Vetter works in Stuttgart for the Developer Support Organiza-
tion of IBM Germany. You can reach him by e-mail at rvet-
ter@de.ibm.com.

Acknowledgments

Preface

This book would not have been possible without the help of the follow-
ing people who contributed information, resources, and technical
advice: Ueli Wahli and Walter Fang, IBM ITSO San Jose, Sergio Hen-
rique Monteiro da Silva, IBM Brazil, Mike Polan, IBM Toronto,
George DeCandio, Rich Kulp, Dale Nilsson, IBM Research Triangle
Park.

Many thanks to Jens Tiedemann, ITSO San Jose Center Manager,
Petter Sommerfelt, ITSO San Jose Center DM/ST Manager, and Bar-
bara Isa, IBM Santa Teresa Lab, for getting this project started. Spe-
cial thanks to everyone at the ITSO San Jose Center, in particular
Elsa Barron, Mary Comianos, Stephanie Manning, Alan Tippett, and
Guido De Simoni for their continuous support and to Andi Bitterer for
designing the book cover and for speeding up the publishing process
through his former experience. We are extremely grateful to Maggie
Cuttler for meticulously editing our frenchy-germano interpretation of
the Shakespeare language and whose patience and support continues
to amaze us! Thanks also to Mike Meehan, and Patti Guerrieri at
Prentice Hall for his support and to Lou Evart at Softline Interna-
tional Inc. for making this book look like a book.

XXix

Acknowledgments

XXX VisualAge for C++ for 0S/2

Part 1

uction to
sualAge for
C++ Environment

We are condemned to live in interesting times.
-Chinese Proverb

Where are the good old days? Those days when computer vendors pro-
vided not only mainframes with appropriate operating systems but
also matching software tools to extend the base equipment. When
salesmen led happy lives supporting their two or three favorite cus-
tomers. When application developers could focus on database transac-
tions, concentrate their efforts on implementing the business logic,
and forget about the user interface—because terminals behaved like
typewriters, and the poor person who was allowed to give some piece
of input felt like an external device, closely connected to the applica-
tions. Those days, when programmers as software gurus hacked thou-
sands of lines of read-only code into their editors, are gone.

Look how times have changed! More people work out of their home
offices, where they write at least a few lines of code in their preferred
languages and fiddle with configuration files to tailor their individual
environments. New technologies provide screens with brilliant graphi-
cal views of the user interface. Under constraints, programmers must
build complex programs and be responsive to new requirements or
changing environments. And most challenging of all, thousands of
hardware and software suppliers freely offer their products but show
little concern for connectivity.

Yes, those good old days have gone, and what we need right now are
new tools and techniques tc develop mission-critical applications that
can run on various platforms and be easily adapted to new require-
ments. Otherwise, the software crisis will never end.

VisualAge for C++ for 0S/2

Application
Development

When we look at the manufacturing industry, we find that many man-
ufacturers use components to build their products. We discover that
many standardized elements, such as bolts and nuts, can be pur-
chased anywhere. We learn that companies use the same component
for different products; for example, car manufacturers use the same
rear-view mirror for all of their models or the same clutch for many of
their models. We realize that, before going into actual production,
engineers build a mock-up that reveals possible construction faults.

When we look at the software industry, we find that many new prod-
ucts are built from scratch, and for a number of reasons: A new pro-
gramming language appears that is supposed to easily solve problems
of a certain domain, an application requires a new database system
that causes many changes in existing software, a new team member
arrives with new and better ideas, or an old team member leaves the
company, accompanied by all of his or her undocumented knowledge.

Visual Programming

We discover that there are no standardized software modules on which
programmers can rely. We learn that there are many function collec-
tions, so-called program libraries, that help deal with various software
domains, such as databases, networks, communications, and graphi-
cal user interfaces (GUIs). If programmers want to use those libraries,
however, they must laboriously look for each function and its parame-
ters, leafing through multivolume manuals. Furthermore, if program-
mers mix libraries from different producers, they are often confronted
with compatibility problems, such as duplicate names.

VisualAge for C++ does not do away with low-level function libraries
and cannot prevent library producers from using the same names, but
it supports the building of well-designed models and software parts
that can be reused in multiple applications and on different hardware
and software platforms.

Visual Programming

During the past 10 years, software designers have enriched the pre-
sentation of operating systems on personal computers and worksta-
tions, providing users with GUIs. At the same time, software
developers have begun to accommodate their applications to this new
environment.

The benefits of GUIs from the user’s perspective are obvious:

O Users no longer have to type command lines with many argu-
ments and cryptic options.

Q Users can control applications more intuitively.

0 Users can simultaneously look at different views.

Q Applications look polished and provide a consistent interface.
Programmers, however, must deal with hundreds of new functions

that exploit the capabilities of the GUI, and they must cope with a
new programming approach: event-driven programming.

In the event-driven programming paradigm, programmers send mes-
sages to graphical elements, and, if an event occurs, the graphical sys-
tem sends a message to a function that programmers must provide.
So, from the developer’s perspective, the disadvantages of a GUI also
are obvious:

0 New concepts must be learned quickly.
0O Complexity increases.

Q Thus, development time increases.

VisualAge for C++ for OS/2

Visual Programming

To shorten both the learning curve and development time, some large
and small software companies alike offer tools that enable program-
mers to develop applications visually. Thus, programmers do not have
to invoke their editors to start writing a new program; they can build
the GUI by designing it on their screens. But, of course, there is more
than the GUI—programmers must be able to add business logic and
data access transactions. The trouble begins exactly at this point.
With most existing tools, programmers can no longer develop visually;
they must provide the code manually. Using VisualAge for C++, how-
ever, programmers can continue to work visually, because they have
the components for building not only a GUI but also the entire appli-
cation, including database access and multimedia features.

Before you can enjoy the powerful tools of VisualAge for C++, you
should be acquainted with object-oriented application development,
an approach that has begun to emerge as the software world becomes
more and more complex. The GUI challenges us, as does the need for
remote data access, with its underlying communication protocols, and
the fact that we cannot quickly rewrite existing code to adapt it to a
new hardware or software environment. We need methods and tools to
help us comprehend and deal with this challenging complexity.

Instead of decomposing huge applications into procedures, today’s
software specialists understand problems as assemblies of objects.
This approach simplifies their views of problems and helps translate
those views into software. Object-oriented languages, in which the
concept of objects is inherent, support programmers in their transla-
tion efforts.

Programmers do not necessarily have to use an object-oriented lan-
guage; they could implement objects and their behavior by using a
procedural language. Procedural languages, however, involve a cer-
tain degree of danger; namely, they do not hinder programmers from
arbitrarily accessing objects. Programmers can directly modify an
object’s data during the execution of every module, so they must alter
many modules whenever an object changes its behavior or data struc-
ture.

With object-oriented languages, programmers can access an object’s
data only within certain modules, so they know where to apply the
changes. In addition, because the object-oriented approach includes an
analysis and design phase that programmers must go through before
they start writing programs, they are unlikely to write poorly struc-
tured code. In this book we explain all phases of the object-oriented
approach and show you how to put the approach into practice with the
help of VisualAge for C++.

Chapter 1. VisualAge for C++ and Application Development 5

Object Talk

Object Talk

Objects

In this section, we introduce some object-oriented terms and concepts
that we use throughout this book. You will not find an in-depth discus-
sion of the object-oriented approach to software development or the
definition of every object-oriented term. If you are interested in an
extensive explanation of object-orientation, we recommend that you
consult the books listed in the Related Publications section.

In our real world, an object is, according to Webster’s Dictionary:
Something perceptible, especially to the sense of touch or vision.

Indeed, according to this definition, we have a large assortment of
objects! Let us take a car as an example. If you ask two people to
describe a certain car, they will probably give two completely different
answers, on the basis of their knowledge, their way of looking at and
evaluating things, and their interests. A passionate driver will tell you
about the car’s motor and give you many other technical details about
the internal workings of the car. A person who has never driven a car
will tell you about the color of the car, its estimated length, width, and
height, and anything else that is visible. No one, however, can give a
“correct” description that ericompasses all properties of a car. Even a
car’s manufacturer, who knows every element of the car, would fail to
describe it correctly, because he or she would not know its current
mileage or the amount of missing tire rubber. Objects in our real world
have an infinite number of attributes and purposes. A car’s purpose is
as a driving machine, but it also can be (mis)used, as a dog house, for
example.

In driving schools, instructors describe a car by emphasizing its func-
tion and explaining how to handle the steering wheel, gearshift, and
pedals and how to interpret the indicators on the dashboard. In tech-
nical terms, we can say that instructors explain the interface of the
car, how different input parameters influence the car’s behavior, and
how drivers can understand the car’s output values.

So we see that real-life objects have various properties, namely:
O Attributes, such as color, length, width, height, weight, and mass
QO Interfaces, such as steering wheels, pedals, and door handles
Q Functions or actions, such as driving, braking, or sheltering dogs
By now we should have some idea of how we can realize the transition

from our real world to the virtual world of computers. Of course, the
object-oriented approach did not invent this transition, but it facili-

VisualAge for C++ for OS/2

Object Talk

tates it in a neat and transparent manner. Procedural programming
languages offer primitive data types, such as integers, floating-point
numbers, characters, and pointers. Additionally, they offer compound
data types, so-called structures or records, where several elements
with primitive or compound data types can be stored. Object-oriented
languages offer a particular data type that can store all properties of
an object and guarantee that the object’s attributes are manipulated
only by its own functions or well-defined interfaces.

In the procedural approach, an object generally is divided into struc-
tures that contain its attributes and procedures that deliver its func-
tions and operate with its data. The disadvantage of using procedural
languages is that nothing (except rigid discipline) prevents program-
mers from directly manipulating the data of other objects. Although
such manipulation was not originally intended, programmers are
inclined to do so when there are time constraints. Therefore, the pro-
cedures and data structures of different objects often are heavily inter-
dependent, which makes reusability almost impossible and
complicates the process of extending the software system.

Objects in computer environments, once they are designed, are dis-
crete, have a limited number of attributes, and behave as defined (but
sometimes not as intended). Software objects represent real-life
objects but are implemented in a manner that is appropriate for a par-
ticular problem. Again, let us take a car as an example of an object.
For an application that supports car sellers, designers implement the
car object with attributes that are important for marketing purposes,
such as price, horsepower, color, and number of air bags. These
attributes are rather high level, because customers usually are not
interested in the amount of steel or aluminum that was used to pro-
duce the car. For an application that supports the car manufacturing
process, however, designers must assign more attributes to the car
object, because engineers are interested in details that are essential to
the building of a car. In both applications, the car object adopts only
some of its real-world attributes.

Classes

If we consult Webster’s dictionary again, we find that a class is defined
as:

A set or group whose members share at least one attribute.
This definition also offers unlimited possibilities. Let us take, for
example, animals, as all members share the haveOrganism attribute.

Biology teaches us that humans also share the haveOrganism
attribute, so according to Webster’s definition, humans belong to the

Chapter 1. VisualAge for C++ and Application Development 7

Object Talk

Inheritance

same class. Sorry? Another example: car is a class, as all members
have the fourWheels attribute. Rollerskates also share the fourWheels
attribute, so they belong to the same class. Sorry again?

These examples show how difficult it sometimes is to find the correct
level of abstraction. Here, of course, it is quite obvious that we chose
the wrong level. Animals and humans do belong to the same class, but
to a more generalized class, say, livingBeings. Rollerskates and cars
can belong to the more generalized class, fourWheeled. We notice that
we can describe classes in more abstract terms than we can describe
objects.

We chose our first example of a class from science, not accidentally, as
biologists actually group the world of living beings into classes, such
as mammals, cold-blooded animals, and microbes. Chemists group
substances into classes, for example, organic and inorganic sub-
stances, and physicists deal with solid, liquid, and gaseous sub-
stances. We see that in every domain scientists use classes to
structure our complex world into comprehensive groups. Depending
on the current focus of our interest, the classification may be very
detailed.

Classes in computer environments are invented to structure a soft-
ware problem and thus should be regarded as groups whose members
share several (not just one) attributes or provide similar function. In
our examples of both objects and classes, we look at cars. The Car
class contains the set of all cars. Every car provides the same function
and has similar attributes and interfaces. This fact is quite obvious
because experienced drivers can operate every car entrusted to them,
even if they have never seen a certain model before. The Car class
describes the general functions that all cars have in common. A car
object is a distinct instance of the Car class, such as your car or the car
parked in your preferred space.

In real life we know the term “inheritance” very well, as we all dream
of coming into a small fortune through inheritance. Its meaning in the
object-oriented paradigm is completely different, however.

Strictly speaking, inheritance in the object-oriented world relates
more to its biological meaning, because one class does not bequeath its
properties to another class and pass away; the new class originally
looks and behaves like its parent class, and the two classes coexist.
The class designer specializes the new class by adding or changing the
original attributes or functions, so that the class can fulfill its
intended purpose. You can compare this work to that of a car design
engineer who wants to create a new model. He or she probably does

VisualAge for C++ for OS/2

Object Talk

not begin from scratch but takes an existing car as a prototype, modi-
fies it here and there, perhaps removing the roof to come up with a
convertible version.

Note that the design engineer designs the new model by using draw-
ings, or better, with the help of a computer-aided design (CAD) pro-
gram. Consider also that the removal of the roof incurs many
subsequent changes. We can assume that a car without a roof requires
a different chassis, different front doors, and other parts that will dif-
ferentiate it from a car with a roof. So, we do not recommend applying
inheritance when the derived class undergoes this kind of change,
because the main benefit of inheritance (and here we come back to
computer science) should be reuse of existing classes.

Look at Figure 1. The Convertible class is a specialization of the Car
class, and the Car class is a generalization of the Convertible class. A
generalization of the Car class would be Vehicle. Inheritance means
that the specialized class adopts all properties of its ancestor class;
that is, the specialized class behaves exactly like the ancestor class
and owns the same attributes. In fact, if you derive from an existing
class, you work on its copy. But, you can add new attributes and func-
tions to the derived (specialized) class or change existing functions.
For example, the openSunRoof function is no longer valid for the Con-
vertible class, whereas the rollbar attribute is not present in the Car

class.
y
c o
o ©
= S
g o
= o
o 5
3 2
%) S
Convertible

Figure 1. Inheritance

Chapter 1. VisualAge for C++ and Application Development 9

Object Talk

The ability of the descendants of a class to inherit all functions of their
ancestor provides the means of reusing code. Modification of common
behavior need be implemented only once, namely, inside the functions
of the ancestor class.

Encapsulation

The implementation details of a car’s functions are hidden from driv-
ers, who must know only how to handle the interfaces.

Car drivers should treat their engines with care and shift the gears
appropriately. For beginners, the procedure of depressing the clutch,
shifting gears, letting out the clutch, and letting in the clutch again is
most challenging during the first few lessons at a driving school. In
cars equipped with automatic transmissions, drivers can shift gears
without having to use any additional pedals or shifts. The gear change
is encapsulated inside the acceleration process, so that drivers need
only operate the gas pedal. Drivers also know that as soon as they
apply the brakes, the car slows down, but they do not know (and do
not care) whether the brake pedal activates a disk brake or a drum
brake.

Object-oriented programming languages as well offer encapsulation.
Objects reveal only their interfaces, not their internal implementa-
tion. Callers of the functions do not care how the underlying algo-
rithms are implemented, but they rely on the promised behavior of the
function.

Polymorphism

10

The term polymorphism looks so strange that we consult Webster’s
again and find it defined as:

Genetic variation that produces differing characteristics in individuals
of the same population or species.

Well, this definition in itself looks strange. So let us try to understand
the meaning of polymorphism by looking at its Greek root and con-
structing a noun phrase from the result: poly means many or multiple,
morph means shape or form. So, we define polymorphism as:

Ability of a thing or organism to exist in multiple forms.

In the real world, we can find such examples as wax or amoebas.
When you visit wax museums you can see that wax really exists in
many different forms. And if you happen to have access to a micro-
scope and a culture of microorganisms, you can see that amoebas con-
stantly change shape as they move and engulf food.

VisualAge for C++ for OS/2

Object Talk

Polymorphism in an object-oriented sense differs slightly from wax
and amoebas. The characteristic of having different forms can also be
interpreted as providing flexible, that is, nondetermined, behavior. Let
us take a crisp example from real life: When you step on the tail of a
dog, it barks, whereas when you step on the tail of a cat, it meows.
With all apologies to the pet world, this is polymorphism in action!
The same action executed on different species (understand type of
object) provokes different reactions. Let us look at how polymorphism
applies in your everyday life as a programmer.

Generally, when you invoke a function, you expect a determined flow
of execution, because the function is designed and implemented to
carry out a particular task. In pure object-oriented languages, how-
ever, a function is always coupled to a class. At coding time, the exact
class that is coupled to the function when it executes need not (and
often cannot) be known. Then, during run time, when the function is
called, the class that actually executes the invoked function can be the
specified class or a descendant of that class.

Say, for example, that we want to call the draw function of the Figure
class, and we expect that the actual object should draw itself on the
screen. We do not care, however, whether during run time the actual
object will be an instance of the Circle or Square class, both of which
are descendants of the Figure class. Obviously, the draw function
behaves differently according to the actual class. In future releases of
the application, one or more new descendants of figure might exist, for
example, the Triangle class, which also provides its draw function.
The good thing is that the caller of the draw function does not have to
know about the existence of the new class.

Developers cope with many classes and objects. Some classes and
objects directly represent the image of real-life objects; others are met-
aphors for services that are required to implement the business logic
or communicate with either the user of the application or external
devices. In large software applications, the associations and interac-
tions among all objects are both difficult to describe and complex, so
we must have methods to shed light on that complexity. Without such
methods, developers would soon see themselves as “object-disori-
ented”!

Object-Oriented Methods
Webster’s defines the term method as:
Orderly or systematic arrangement, sequence, or the like.
In fact, we need a systematically arranged model to define, refine,
implement, maintain, and document complex software constructions.

It is important that all participants of a project know the terminology

Chapter 1. VisualAge for C++ and Application Development 11

Object Talk

12

of the problem domain. Generally, when you begin a new software
project, you are given some ambiguous text or informal specifications.
Your customers cannot express precisely what they want, and, if you
do not know everything about their specific problem domain, you can-
not ask the correct questions to fill in the gaps. As soon as develop-
ment starts, the requirements for the product change, because some
gaps now become obvious, and you can hardly estimate how long you
will work on the implementation. In most cases, development goes on
indefinitely, because users always find something that is worth chang-
ing or adding. Object-oriented methods cannot prevent your customer
from having additional requirements, but it can decrease the effort
you expend to integrate the extensions into your design and imple-
mentation.

Several analysts, such as Rumbaugh, Jacobson, and Wirfs-Brock, have
published techniques for translating real-life problems into different
models that offer a view of the problem domain and facilitate system
implementation. Because object-orientation is a rather new subject,
some of the methods are likely to be refined in future publications.
One common thread among the methods that is not likely to change,
however, is the recommendation to develop applications iteratively.
The visual modeling technique (VMT), which we introduce next, has
adopted the object-oriented methods of Rumbaugh, Wirfs-Brock, and
Jacobson.

James Rumbaugh’s object modeling technique (OMT) is popular
because of its simple notation. Basically, OMT consists of three mod-
els: the static model, which captures the relations among objects; the
dynamic model, which captures the run-time behavior of objects; and
the functional model, which sketches the flow of operations.

Rebecca Wirfs-Brock’s responsibility-driven design (RDD) reflects the
responsibilities, that is, the tasks, that a class must accomplish. Ms.
Wirfs-Brock introduces collaborators, which are classes that help a
class fulfill its responsibility. She suggests creating one class-responsi-
bility-collaborator (CRC) card per class; each card indicates the class,
lists all of its responsibilities, and for each responsibility gives the
related collaborators.

In Ivar Jacobson’s object-oriented software engineering (OOSE) tech-
nique, objects and classes are found with the help of use cases. A use
case is an external view describing an interaction between a user and
a system. The technique essentially draws a border around the prob-
lem domain and defines user roles.

Rumbaugh, Jacobson, and Wirfs-Brock state that there are static and
dynamic models. The static model, also known as object models,
focuses on the hierarchy and associations of objects. The dynamic
model emphasizes the interdependencies and run-time behavior of
objects.

VisualAge for C++ for OS/2

Visual Modeling Technique

Visual Modeling Technique

In Webster’s we find the term technique defined as:

The systematic procedure by which a complex or scientific task is
accomplished.

Software development is actually a complex task. Although several
attempts have been made to approach the task scientifically, with the
goal of automating software development, the inherent complexity is
(still) a big obstacle. We need heuristic and iterative techniques to
master the problem.

If we look at the methodologies of Rumbaugh, Wirfs-Brock, and Jacob-
son, we notice that they thoroughly explain their respective system-
atic procedures, but none of them address the new programming
technique that has become important for modern application develop-
ment, namely, visual programming. The authors mention the impor-
tance of developing an analysis prototype that customers can use to
verify the correctness and completeness of the user interfaces, and
they demand the development of a design prototype that reflects the
current state of the design model and evolves toward the final imple-
mentation. But, they do not explain how to implement the prototypes.

VMT fills the prototype implementation gap and, by using the follow-
ing methods or techniques, serves as a roadmap for developing appli-
cations with GUIs:

0 OOSE: VMT uses the use case model to find potential objects and
classes in the problem domain that form the object model. The use
case model also serves as a starting point for the development of
dynamic models.

Q1 OMT: VMT uses the static model (object model) and the dynamic
model (event-trace diagram and state-transition diagram) to illus-
trate the relationships among objects and the run-time behavior of
the objects.

01 RDD: VMT uses the CRC card technique to identify an object’s
responsibilities and collaborators.

VMT is a complementary approach to object-oriented application
development (Figure 2). It uses OMT notation to illustrate the static
and dynamic models, and it divides the development process into
three phases: analysis, design, and implementation.

Chapter 1. VisualAge for C++ and Application Development 13

Visual Modeling Technique

Analysis

14

§ 55

Req.

]
\
/

o
Actor1 \ Use use ¥ s Actor?
Case \ Case Case ctor
== P= =
b =- P == P =
P =" P =" P =]
/ — \
User Interface /2 \
Design Object Dynamic
Model Model :
R C
%:
[Responsibility
Driven Design

lterate

Figure 2. VMT: A Complementary Approach to Object-Orientation

Furthermore, VMT proposes that you not draw strict boundaries
between the phases; rather, you should analyze a little, design a little,
implement a little, verify your results, and iterate. With VMT, you can
check whether the resulting models are complete and consistent and
thus provide a stable and verified system.

The goal of analysis is to understand the problem domain, that is, to
clarify what the system should provide. So, the first step is to separate
the problem domain from the real world. In most cases, you would
carry out this first step together with your users and define problem
statements that are based on the requirements specification. Then you
would arrange these problem statements to form use cases (Object-
Oriented Software Engineering. A Use Case Driven Approach by 1.
Jacobson et al.). At this stage, the use cases are rather high level. You
do not consider any implementation constraints, except that the sys-
tem should be affordable and implemented within a reasonable time
frame. You simply describe the essentials of the system’s functions,
regarding the functions as black boxes. Consequently, you take only

VisualAge for C++ for 0S/2

Visual Modeling Technique

those objects that directly represent their real-life counterparts; you
can find these objects by analyzing the use cases (the process of find-
ing objects is discussed in Chapter 3, “Analysts at Work,” on page 61).

You develop an analysis prototype and show it to your users, so that
they can verify that the use cases are complete and correct. If the use
cases are not complete and correct, seize the opportunity: extend exist-
ing use cases or add new problem statements and formulate new use
cases that were not obvious at the very beginning. Then, refine the
prototype and go back to your users.

When you have finished developing the use cases and the correspond-
ing user interfaces, determine whether you can group some of the
objects in classes. Once you have found all classes, you can establish
their relationships (especially inheritance and aggregation),
attributes, and behaviors. The dynamic model describes how the
objects interact. As the objects of the analysis model are derived
directly from the problem statements and therefore represent real-life
objects, they are also called semantic objects.

We discuss the analysis phase in detail in Chapter 3, “Analysts at
Work,” on page 61.

Design

The main goal of the design phase is to devise a solution, that is,
answer the how question. As input you use the models that you devel-
oped during the analysis phase. VMT divides design into system
design and object design. In system design, you determine the hard-
ware and software components that are relevant for the application,
such as the operating system, programming language, development
tools, database system, and communication protocol. You also chart a
high-level structure for the application functions. In object design, you
refine the models from analysis, considering the constraints that the
hardware and software components impose on the system. You then
use these refined models for the design prototype.

We explain the design phase in detail in Chapter 4, “Designers at
Work,” on page 83.

Implementation

The goal of the implementation phase is to translate the design model
into the implementation model, that is, the actual application con-
struction. The design and implementation phases are closely coupled
as the design prototype gradually evolves toward the final implemen-
tation model.

Chapter 1. VisualAge for C++ and Application Development 15

Visual Programming with VisualAge for C++

We explain the implementation phase in detail in Part 3, “Building the
Visual Realty Application” on page 105.

Visual Programming with VisualAge for C++

16

VisualAge for C++ takes advantage of the visual programming con-
struction technology of IBM’s VisualAge Smalltalk™ product. Visual-
Age for C++, a follow-on product of the former CSet++™ product,
includes the development tools from the CSet++ product. This power-
ful, object-oriented combination lets you build parts visually and then
combine the parts to construct sophisticated applications. The key
concept of VisualAge for C++ is that all existing or built parts are
designed for reusability.

Using VisualAge for C++, even inexperienced programmers can build
partial or complete applications because they do not have to write any
code, provided that all components already exist. These components
consist of graphical elements, the so-called visual parts, and the
classes that handle business logic and data access, the so-called non-
visual parts.

In truth, only in rare cases will you develop an application without
having to add a piece of code! If you must add some code manually,
however, VisualAge for C++ supports you in adhering to the object-ori-
ented paradigm, that is, building reusable parts. It provides a library
of prefabricated, ready-to-use components that you can use “as is” or
enhance. You decide whether you write the missing code yourself or
buy additional libraries with parts that meet your needs.

Once you start using VisualAge for C++, you gradually learn the con-
cepts of object-orientation. At first, you might take advantage of the
GUI creation capability only, while still calling your existing code.
Then, you take the plunge into visual programming, reusing your
GUI. Finally, having improved your skills in object-orientation and
C++, you explore the advanced features of the product that enable you
to create your own parts.

When you program visually with VisualAge for C++ you develop your
applications by using a graphical, not a textual, tool. The Visual
Builder tool provides a powerful framework for developing not only
simple GUIs but a complete application. You choose the visual parts
that your application requires and, using the mouse, lay out the appli-
cation interface by dragging and dropping the parts on a free-form
surface. In this way, you and the end user of the application can look
at the GUI before you have included the business logic and invoked
the compiler.

VisualAge for C++ for 0S/2

Visual Programming with VisualAge for C++

Before we show you how to build an entire application by using an
object-oriented approach, let us describe the complete set of VisualAge
for C++ tools.

Chapter 1. VisualAge for C++ and Application Development 17

Visual Programming with VisualAge for C++

18

VisualAge for C++ for OS/2

ing Started in
sualAge for
++ Environment

We recommend that you read this overview of the VisualAge for C++
environment if you want to learn the basic concepts and develop a
broad understanding of the VisualAge for C++ tools.

Tip!

If you are familiar with the C Set ++ Version 2.1 envi-
ronment, you can step through the What’s New and
Nifty boxes to discover what has changed and has
been added in Version 3.0.

VisualAge for C++ provides you with all of the tools you need, from
developing a prototype with the Visual Builder to tuning application
performance with the Performance Analyzer. VisualAge for C++ lets
you manage your project, build your application with the Visual
Builder and Data Access Builder, edit the code, compile it, and finally
link it. The Debugger eases the task of fixing problems. The Browser

19

Managing Your Project

and Performance Analyzer, respectively, help you understand the
structure of your code and the behavior of your application at run
time. Of course, if you do not want to use Visual Builder to build your
application, you can still type in your source code and take advantage
of the powerful VisualAge for C++ compiler and linker.

Within VisualAge for C++, tools can interact through the Work-
Frame/2 services. An environment with this capability is called an
integrated development environment (IDE). Unlike most IDEs, Work-
Frame/2 seamlessly integrates 0S/2, Windows™, and DOS programs,
enabling them to cooperate without actually knowing each other.

Managing Your Project

Good programming discipline suggest that you do not start coding as
soon as you have a rough idea of what your application should do.
Rather, you should plan your development and organize files on your
system. WorkFrame/2 is a highly customizable application develop-
ment environment that can help you with these planning and organi-
zation tasks.

WorkFrame/2 Concepts

20

—— What’s New and Nifty?

e Full integration with the OS/2 Workplace
Shell™ e Project hierarchies instead of sepa-
rate concepts for base and composite projects e
Common container for project files and project
monitor window ¢ New Build and MakeMake
facilities e Fast and easy generation of skeletal
applications with Project Smarts e Ability to
customize projects with 0S/2, DOS, or Win-
dows tools

When building an application, you deal with many different pieces of
data, such as C++ source files, resource files, and help files—the
project elements. All project elements that make up an application or
a subsystem are grouped inside a project, which is the core of the
WorkFrame/2 environment. Each project has a single target, for exam-
ple, an executable file or a library.

Each project element has a type. WorkFrame/2 uses this type to
choose which action to apply to a project part. For example, if you
define a C++ SourceFile type as all files matching the *.cpp file mask
and a SystemEditor action that takes the C++SourceFile type as input

VisualAge for C++ for 0S/2

Managing Your Project

and corresponds to the enhanced editor for OS/2 Presentation Man-
ager™ (EPM 0S/2), all project elements with the .cpp extension can
be edited through the EPM editor.

An action can correspond to any file that can be run, such as an exe-
cutable file or a command file written in the REXX language. For each
action, an entry point is associated into a specific support dynamic
link library (DLL). This DLL defines the action default options and
provides the GUI to easily alter them. For example, all VisualAge for
C++ compiler options can be accessed through the interface shown in
Figure 3.

__iEnable performance analyzer
Remove stack probes

__IRemove C++ axception information

_iDo not generate defautt library info.

Vi Use optlink linkage

__Use tiled memory

| Use fast floating point method
Generate code to run at ring 8
Remove unused data in intermediate files
Invoke intermediate code linker
Generate FWAIT after load

.| Use fast integer method

| ‘ 0K § . Reset ; E[}fefault Cangel i Help

Figure 3. Interface to Alter Options for the VisualAge for C++ Compiler

Actions must belong to a class, such as Edit or Compile. Classes allow
you to use the same action name for different types. For example,
when you apply the Edit action class to either a bitmap or a C++
SourceFile, you obviously call different actions that start different
tools, but this is hidden from the user through the WorkFrame/2 inter-
face. Figure 4 shows the list of actions defined in the default Visual-
Age for C++ project for the Edit class.

Chapter 2. Getting Started in a VisualAge for C++ Environment 21

Managing Your Project

Iypes View Help

(3] (@

Editor

(Ctrl+Shift+E) 1 :

— 8/ Dialog Editor
—

— % Icon Editor
— EPM
—% System Editor

Figure 4. Actions for the Edit Class

An action can be file or project scoped. File-scoped actions can be
invoked only from the project elements defined as their source types.
For example, the IconEditor action is available only from icon files.
Project-scoped actions apply to the project entity and can generally be
invoked from any tool that has been started within the project. A typi-
cal example of a project-scoped action is the Make action

Types can be grouped into more general entities: for example, editable
could be a way of grouping the C++ SourceFile and C++ IncludeFile
types. If you now define an action that takes editable as input, that
action applies to all files that match all types grouped in the editable
type. Editable is called a logical OR type.

—— Warning!

Actions that define both source and target types are eligi-
ble to the MakeMake utility when generating a make file
for your application. The choice of source and target types
deeply influences the behavior of the MakeMake tool. If the
choice is incorrect, the generated make file will be unus-
able.

Actions and types are configured for each project through the tools
setup feature. A project’s tools setup can be inherited by several
projects and then modified locally.

22 VisualAge for C++ for 0S/2

Managing Your Project

Creating a Project with WorkFrame/2

To take full advantage of the integration facilities of WorkFrame/2,
you must create a project for your application or subsystem, either
from a predefined template or by using the Project Smarts facility.

Using Templates

The Workframe/2 Version 3 project template is created in your system
at installation time. With the template, you can create a new, “empty”
project; that is, you must configure some types and actions in the tools
setup before you actually start using the project.

To help you begin, VisualAge for C++ is shipped with a default Visual-
Age for C++ project template, fully configured with the VisualAge for
C++ tools and the most common types. Even if you reuse this tem-
plate, you can still add your own actions and types to reflect your
needs and preferences. Any 0S/2, DOS, or Windows application can be
added as an action to the project’s tools setup.

Using Project Smarts

Project Smarts is a new facility that offers a catalog of skeletal appli-
cations to use as a quick start for your project. With Project Smarts,
you can create a project configured according to an application cate-
gory, such as:

Q Visual Builder application

0 Presentation Manager application
0 Resource Dynamic Link library

Q C++ Dynamic Link library

0 Data Access Builder application

Any application created from Project Smarts inherits from the Visual-
Age for C++ default project.

Choosing a certain catalog entry starts a REXX installation script.
The script lets you specify the project settings, such as its working
directory and name, and then creates a project configured with the
tools setup appropriate to the application. Each skeletal application
consists of some project parts that you can use as a basis for your own
application development. Figure 5 shows the description of the Pre-
sentation Manager skeletal application.

Chapter 2. Getting Started in a VisualAge for C++ Environment 23

Managing Your Project

Use Project Smarts to create a project to suit your needs. Select
one of the following customizable projects and click on "Create".

Available projects:

IPF Document

Resource Dynamic Link Library
Ul Class Library Application
Visual Builder Application
WorkPlace Shell Application

Description of the selected project:

A basic Presentation Manager (PH) application that creates a
window with a menu bar containing the common menu items,
File, Edit, and Help. The application is fully help-enabled, with
context-sensitive help and tutorial templates. Commands are
processed in a standard window procedure that provides File
open and Save as dialogs. You can use this application as a
template for writing your own PM application.

Create g | Cancel ; Help E

The name of the project to be created.

Figure 5. Project Smarts Catalog View: Presentation Manager Application

You can add your own skeletal applications to the Project Smarts cata-
log. Project Smarts provides REXX utilities to use for writing the
installation script of your application. For example, you can create file
templates according to your own corporate standards and define them
as basic project parts for a standard project. Building file templates is
discussed in more detail in Chapter 5, “Setting Up the Development
Environment,” on page 107. You can also create your own catalog of
applications, as Projects Smarts is not an executable file but an 0S/2
Workplace Shell object template.

24 VisualAge for C++ for 0S/2

Managing Your Project

—— Inheritance or Templates?

What is the difference between creating a
project:

0 by inheritance? You cannot modify
existing actions, types, or variables in
the base project, but you can add your
own. Any change to the base project,
however, is automatically reflected in
all child projects.

Q0 by copy (or using templates)? You can
modify any actions, types, and vari-
ables. You must use this solution if, for
example, you want to add a new type
and use it as input for an existing
action. This solution provides more
flexibility for updating the tools setup,
but it implies that you update projects
one by one if any feature must be
changed.

In both cases, you can modify the project
settings, such as the target name or the
project location. You also have to specify
action options, such as compilation flags or
the libraries required for linking.

Creating Composite Projects

Most applications, unless they are truly simple, consist of a hierarchy
of projects. The way in which you organize your projects reflects their
dependencies. Defining a project as composite is equivalent to creating
other projects as project parts of that project. Typically, an application
can be divided into several subsystems. For each subsystem there is a
corresponding library, which you must build before building the appli-
cation itself. You could manage such an application, as depicted in
Figure 6, where the main project depends on its nested projects; that
is, it cannot be built if the subproject targets have not been completed.

Chapter 2. Getting Started in a VisualAge for C++ Environment 25

Managing Your Project

VisualRealty - lcori view

™ vrmain.vbb
7 vrmain.cpp
Y vrmain.hpp
7 Makefile

Figure 6. Example of Composite Project

WorkFrame/2 handles composite projects in such a way that the Build
and MakeMake facilities recursively build the project hierarchy.

The MakeMake and Build Facilities

Used together, the MakeMake and Build facilities let you build your
application without having to create and maintain make files. The
MakeMake facility creates a make file for a project by examining the
tools setup actions and types and determining the correct sequence of
commands to build the project target.

The Build facility uses the MakeMake facility to build the make file
for your application and to start a make utility such as nmake against
the generated make file. The Build facility understands project organi-
zation and thus builds subprojects first in a project hierarchy

Customizing a Project with Build Smarts

26

With the Build Smarts facility, you can temporarily modify the
requested compiling flags and linking options for the most common
build options, such as debug, browse, or optimize. Build Smarts over-
rides the current options for the compile and link actions as defined in
the project’s tools setup.

When you are working with composite projects, Build Smarts lets you
specify whether you want to build subprojects first. This specification
prevents the Build facility from trying to recursively build all projects
in the project hierarchy. You can also specify preprocessor macro val-
ues to be added or removed at the development or production stages.

VisualAge for C++ for OS/2

Generating Your Code

Migrating Existing Projects

If you are a C Set ++ customer, you must migrate your existing Work-
Frame/2 projects to WorkFrame/2 Version 3. The migration utility
scans the drives on your system to search for WorkFrame/2 Version 1
and Version 2 projects and provides you with a list of those projects.
You can choose among several options:

O Migrate the Project only
2 Migrate Projects and Actions profiles
O Migrate Actions Parameters

We suggest that you refer to the C/C++ User’s Guide for more infor-
mation about project migration.

Generating Your Code

In this section we introduce Visual Builder, a tool for visual program-
ming; the IBM Open Class Library, which provides building blocks for
your application; and the Data Access Builder, which maps relational
database tables to C++ classes.

Using Visual Builder

Traditional GUI builders let you create the interface of your applica-
tion and generate the code for that interface. They do not provide a
visual way of generating the behavior of your application, such as the
piece of code executed when you click on a push button.

Visual Builder is not a traditional GUI builder. It lets you create a
complete application visually by reusing parts, connecting them, and
generating the code for the entire application. The generated code
uses the IBM Open Class Library and therefore is portable across the
platforms where the library is available. See “Building from Blocks”
on page 37 for more information about the IBM Open Class Library.

Visual Builder Concepts

Just as you would use building blocks to build a wall, Visual Builder
uses parts to build applications. You can think about parts as reusable
components that you can tailor to fit your needs, just as you would cut
a building block to fill a gap in your wall.

Any application made from parts is a part itself: Assembling primitive

parts results in a composite part. A primitive part can be a window or
an entry field—it is also called “control” to refer to the PM controls; a

Chapter 2. Getting Started in a VisualAge for C++ Environment 27

Generating Your Code

composite part can be a complete panel for a database information
update (Figure 7). The composite part can be reused as a building
block in another application.

o

x/;vl
]

PRIMITIVE COMPOSITE

+ -

. Add | Delete ;
+ S :
S - Construction

Push Button from Parts

Figure 7. Primitive and Composite Parts

Parts are either visual or nonvisual; an entry field and a frame win-
dow are examples of visual parts; a list of customers is an example of a
nonvisual part.

Parts Interface. Parts communicate through their interface. A part
interface consists of three features: atiributes, actions, and events.
These features correspond to a natural way of viewing parts in terms
of the properties they have (attributes), the services they can provide
(actions), and the notifications they can send (events). Figure 8 shows
a sample part interface for a nonvisual part called SmartHouse.

—— Technical Information!

A part is a C++ class. However, it has proper-
ties that a conventional C++ class does not
have, such as notification enabling. If you map
a class to a part, the data members of a class
correspond to the attributes of a part and the
methods of a class correspond to the actions of
a part. An event is a particular feature of a
part that triggers a notification.

The SmartHouse nonvisual part manages an “intelligent” house that
can detect when someone enters the house and monitor a smoke detec-
tion system. SmartHouse has been designed to send events if it

28 VisualAge for C++ for 0S/2

Generating Your Code

detects anything unusual (doorOpened and smokeDetected events)
and start actions, such as activating the alarm or automatically
switching on the lights.

> address
sk description
sk orientation
sk ownerName

!

b e % activateAlarm
:ACTIONS |~ | skswitchLightsOn

Smart House i
>k deactivateAlarm

Part V4

EVENTS | __ | sksmokelsDetected

% doorlsOpened

Figure 8. Sample Part Interface: SmartHouse

Connecting Parts. Connections define how parts interact through
their interface. A connection is a one-to-one visual relationship
between two parts (visual or nonvisual). Connections are categorized
as:

Attribute-to-attribute

Whenever the value of the first attribute is changed,
the value of the second attribute is updated, so the
attribute values are always the same.

Event-to-attribute
Whenever an event occurs, the attribute is updated.
Event-to-action

Whenever an event occurs, the action is performed. A
variation of this, the attribute-event-to-action connec-
tion, starts an action when a certain attribute event
(for example, attribute changes value) occurs.

Chapter 2. Getting Started in a VisualAge for C++ Environment 29

Generating Your Code

30

Event-to-custom logic

An event-to-custom logic connection lets you call some
user code when the event occurs. The customized code
is encapsulated in a codeSnippet() function. A varia-
tion of this connection is the attribute-to-custom logic
connection.

Event-to-member

Whenever an event occurs, a member function of the
currently edited part is called. This connection lets you
call any member function, even if it has not been
added to the part interface. A variation of this connec-
tion is the attribute-to-member connection.

In Visual Builder, the origin of a connection is called the source part
and the destination of the connection is called the fargef part.

Figure 9 shows several connections for the SmartHouse nonvisual
part. In this example, we create a simple GUI to monitor the state of a
SmartHouse. We first build an entry field (Owner Name) to reflect the
value of the ownerName attribute from the SmartHouseControl part.
Then we use two radio buttons to reflect the alarm status: The alarm
is either on or off. Whenever the door is opened, the Smart House self-
activates the alarm. To monitor the lights in the different rooms of the
house, we use the Light Control button, and we can specify in which
room (represented here by a number) the lights must be turned on

I Monitoring Window

Owner Name [Batman

Room Humber |4 &

~Alarm Status
{Zi Alarm ON (@ Alarm OFF ‘
)| S

E e BmartHouseCaontral

Figure 9. Sample Connections: SmartHouse Monitoring System

VisualAge for C++ for OS/2

Generating Your Code

Table 1 explains in more detail connections we have to create for the

SmartHouse monitoring system in Figure 9.

Table 1.

SmartHouse Connections

Key | Source

Target

Description

| doorOpenedEvent

enable

This event-to-action connec-
tion enables the Alarm ON
radio button whenever the
doorOpenedEvent event
occurs.

A | doorOpenedEvent

activateAlarm

This connection illustrates
that a part can be both the
source and target of a con-
nection. In this case, the
house self-activates the
house alarm if the door-
OpenedEvent event occurs.

B | ownerName

text

With this attribute-to-
attribute connection, you
ensure that the text
attribute (that is, the value
of the entry field) always
reflects the value of the
SmartHouseControl’s own-
erName data member.

B | buttonClickEvent

switchLightsOn

Because the switch-
LightsOn action requires a
room number parameter,
this event-to-action connec-
tion is not complete without
connection .

§ | value

roomNumber

This connection passes the
value of the numeric spin
button as a parameter to
connection [.

Visual Builder Editors

Visual Builder provides three editors that you can use to build your

parts.

The Composition Editor. With the Composition Editor (Figure 10),
you can design the graphical interface of your application, add the
nonvisual parts you need for the logic of your application, and make
the appropriate connections.

Chapter 2. Getting Started in a VisualAge for C++ Environment

31

Generating Your Code

32

Visual Builder comes with a set of nonvisual and visual parts classi-
fied by categories in the parts palette fl. The base parts are mainly
mapped from the User Interface Class Library and the Collection
Class Library. The palette can be extended by adding your own catego-
ries and primitive or composite parts.

The toolbar § provides direct access to a set of tools that you can use to
arrange the parts layout on the free-form surface E.

To create a new application, just pick up the visual and nonvisual
parts you need from the parts palette and drop them onto the free-

form surface. Then make the appropriate connections and generate
the code.

dng Window

Owner Name:

Room Number ﬂi nght Control E E
~Alarm Status ' ¥\
2 Alarm ON # Alarm OFF ; ‘

gm»]}FrameWindow selected. e

Figure 10. Visual Builder: Composition Editor

Visual Builder can generate the following code:

Q Part source, that is, the code for creating the parts and the logic
derived from the connections

Q Main source file, that is, a file containing a main() entry point, if
you want to test your part

Q Make file for building the application (if you are not using Work-
Frame/2 and the MakeMake facility)

Q Application resource file (for national language support (NLS)
The Part Interface Editor. You can use the Part Interface Editor to
create or modify the interface of your parts. With the Part Interface

Editor, you can create the attributes, actions, and events related to
your part, promote features, and select your preferred features.

VisualAge for C++ for OS/2

Generating Your Code

Creating attributes

You create an attribute by entering its name and type.
The Part Interface Editor automatically generates the
declarations for the attribute accessors (set and get
member functions) you need as well as the identifica-
tion of the event corresponding to the attribute. Visual
Builder uses this event to signal any changes to the
attribute value. You enter a short description for the
attribute. Figure 11 shows an example of using the
part interface to create a Boolean attribute.

Attribute type

Figure 11. Part Interface Editor: Attribute Creation

Creating actions

The Part Interface Editor generates a default member
function declaration from the action name provided.
The tool automatically reflects any changes to the
returned type or any addition of parameters to the
function call.

Chapter 2. Getting Started in a VisualAge for C++ Environment 33

Generating Your Code

Creating events

The Part Interface Editor generates a unique event
identification from the event name you provide. Visual
Builder uses the identification to notify other parts
when this event occurs.

An event can have parameters that indicate the name
and type of some data corresponding to that event. For
example, if your part must read a queue element when
receiving an event, the event parameters contain the
element address and its type, such as IString, so that
you can directly access the data with any subsequent

query.

Promoting features

With the promote feature facility, you can provide
access to part features when the part is embedded as a
subpart within another part. Say you define a default-
ButtonsPanel composite part from a simple canvas to
which you add three push buttons (OK, Cancel, Help)
as shown in Figure 12. If you then reuse the default-
ButtonsPanel part in another application, only the
attributes, events, and actions of the defaultButtons-
Panel base part, that is, the canvas, are available.

Because you no longer have access to the default-
ButtonsPanel subparts, such as the three push but-
tons, you cannot directly create a connection that
would start a specific action when clicking on the OK
push button. You must promote any feature that you
want to access from another part that reuses the part.

o | (o | [o |

Figure 12. defaultButtonsPanel Composite Part

34

The Part Interface Editor lets you select a subpart
name (such as OKPushButton), the feature type (for
example, event) and name (for example, buttonClick-
Event). Visual Builder generates a name for the pro-
moted feature (OKPushButtonButtonClickEvent).
This name is now added to the list of features for the
defaultButtonsPanel composite part.

VisualAge for C++ for 0S/2

Generating Your Code

Selecting preferred features

You can select preferred features to customize the list
of features in the connection menu for each part. The
list typically contains the features that you use most
often.

The Class Editor. With the Class Editor (Figure 13), you can custom-
ize code generation parameters. For example, you can change the
source and include file names where the generated code is saved fl or
modify the default constructor and destructor code . You can also
attach a specific icon [to the part. The icon is displayed when you
reuse the part in the Composition Editor.

By default, all graphical resources, such as the label of a push button,
are hardcoded in the generated code. If you want those resources to be
generated in a separate resource file, you must specify such from the
Class Editor, [l, by selecting the Starting resource id check box and
providing the entry field with a resource identifier. This feature lets
you create applications that are enabled for NLS.

Figure 13. Visual Builder: Class Editor

Chapter 2. Getting Started in a VisualAge for C++ Environment 35

Generating Your Code

Whenever you create or modify the interface of a part, such as adding
an action or attribute definition, the code is generated in user-defined
files (with extensions .hpv, .cpv, and .rev). This code is referred to as
the part features source code. Unlike other files that Visual Builder
generates, user-defined files are not overwritten whenever you gener-
ate the part features source code. Rather, the new code is appended to
the files. Thus, you can modify the generated code without fearing
that those changes will be lost at next code generation.

Accessing DB2 Tables with Data Access Builder

36

With Data Access Builder, you can graphically map your existing rela-
tional database tables to an object interface. In a simple case, a rela-
tional database table maps to a class, and a column of the table maps
to an attribute of that class. Once you have defined your mapping,
Data Access Builder generates nonvisual parts to be used in Visual
Builder. Moreover, you can take full advantage of the IBM System
Object Model (SOM) technology by generating the code in the SOM
interface definition language (IDL). (For an introduction to SOM tech-
nology refer to “Direct-to-SOM Support” on page 43.)

Let us take a simple example: We create a car table with four
attributes, color, license, make, and model, as depicted in Figure 14. If
we map this table to a class and generate the code, Data Access
Builder creates two classes:

Q Car

An instance of the Car class maps to a single row of the car table.
The Car class provides the member functions for adding, updat-
ing, retrieving, and deleting a row of the car table.

Q CarManager

The CarManager class provides the services for manipulating a
set of car instances. You can use a Car Manager instance to select
some rows of your table through an SQL query (select method) or
display the complete set of rows (refresh method).

The generated code uses static SQL for efficient data access. Data
Access Builder also comes with a library of classes and parts for data-
base management (connect and disconnect) and transaction manage-
ment (commit and rollback).

VisualAge for C++ for OS/2

Generating Your Code

CAR TABLE
3 Q [©
5} c X [o
s 18 |8

b,

color

license CAR
make S MANAGE
NER
Car Class 78
|
S 4
<

Figure 14. Database Access: From Mapping to Parts Generation

Building from Blocks
—— What’s New and Nifty?

The IBM Open Class Library features:

e Direct manipulation classes (drag-and-drop)
e Multimedia support e 2-D graphics support e
Toolbar support ¢ Dynamic data exchange
(DDE) support e Clipboard manipulation sup-
port e Fly-over help support

Without doubt, one of the greatest advantages of object-oriented pro-
gramming is class reusability. The IBM Open Class Library provides a
comprehensive range of reusable classes from which you can create
and manipulate objects. It is supported across many IBM and non-
IBM platforms to provide maximum portability of your C++ programs.
Most of the VisualAge for C++ tools have been developed by use of the
IBM Open Class Library.

The IBM Open Class Library provides you with more than 500 classes,
grouped in the following libraries:

Q User Interface Class Library

Q Collection Class Library

Q Data Access Builder Class Library

Chapter 2. Getting Started in a VisualAge for C++ Environment 37

Generating Your Code

Q Application Support Class Library
Q Standard Class Libraries

User Interface Class Library

The user interface class library facilitates the development of portable
applications that have a GUI. It is built as a layer on top of the native
window presentation system (OS/2 Presentation Manager (PM)) and
encapsulates its concepts in C++ classes (Figure 15).

With a common interface across platforms, you can recompile your
code without worrying about the low-level changes of the native oper-
ating system. However, some PM features might not be available in
another graphical environment such as Motif®, so you must follow
some rules to guarantee that your code is fully portable. The documen-
tation precisely identifies portability issues for each class across the
available platforms.

Appl. Appl. Appl. Appl. Appl. Appl.

 USER INTERFACE CLASS LIBRARY

i e T R TR RS T L e i

Presentation e Mot |
Manager .
(|

Figure 15. User Interface Class Library Architecture

The User Interface Class Library includes the following elements:

0O Base windows, menus, handlers, events, and help files (display
help, define contextual help, and fly-over help)

QO Base controls, such as entry fields, static texts, buttons, and boxes

38 VisualAge for C++ for 0S/2

Generating Your Code

0 Advanced controls, such as containers, canvases, sliders, note-
books, toolbars, and font and file dialogs

O Application control classes to manipulate threads, timers,
resources, profiles, and the OS/2 clipboard

Q Dynamic data exchange (DDE) classes for communication between
applications on the same machine

0 Direct manipulation classes (drag-and-drop support)

0 2-D graphics classes for drawing primitives (lines and arcs) as well
as support for reading and displaying various graphical formats
(available only in OS/2)

Q Multimedia classes for control of multimedia devices (available
only in OS/2)

Collection Class Library

The Collection Class Library includes a complete set of abstract data
types to manipulate such objects as:

O

Bags and sets: unordered collections of elements
Q Sequences: ordered collection of elements
0O Queues and dequeues (double queues)

U Heaps

O Stacks

a Trees

Bags and sets can inherit from various properties such as indexing
and sort. As a result, you can use sorted bags or key sets. You can alter
queue properties to assign an access priority to added elements.

Data Access Builder Class Library

The Data Access Builder Class Library provides classes that you can
use to manage the connection to a database (authentication, connect,
disconnect) as well as transactions (commit, rollback) on the database.
It also contains the abstract classes that Data Access Builder uses to
generate the C++ classes issued from the mapping of DB2/2® tables
(refer to “Accessing DB2 Tables with Data Access Builder” on page 36).

Application Support Class Library

The Application Support Class Library provides the classes used most
often while developing C++ applications:

Q String manipulation classes: provide member functions to edit,
compare, convert, format, and test strings

Chapter 2. Getting Started in a VisualAge for C++ Environment 39

Building Your Application

O Date and time classes: provide member functions to test and com-
pare dates or times, convert date and time formats

0 Exception classes: provide the framework for throwing exceptions
within the class libraries

Q Trace classes: provide trace facilities to help debugging code

Standard Class Libraries

The Standard Class Libraries consist of the standard I/O stream
library for C++ input and output handling and the complex mathe-
matics library for manipulating complex numbers.

The UNIX System Laboratories introduced the standard class librar-
ies in the C++ Language System Version 3.0. Since then, the libraries
have become a de facto standard and are shipped with all C++ compil-
ers. The set of standard class libraries usually includes the task
library. However, as the OS/2 operating system natively supports
multitasking, the task library is not provided on the OS/2 platform.

Building Your Application

In this section, we introduce you to the VisualAge for C++ editor and
present the main features of the compiler and linker.

Editing Your Code

40

The VisualAge editor, alsoc known as the live parsing extensible
(LPEX) editor, is a language-sensitive editor. It reacts to the type of
the edited file and uses live parsers for keyword highlighting and code
formatting, such as automatic indenting. The LPEX editor dynami-
cally detects errors in your file and does “stupid error checking”; for
example, it finds missing closing brackets and detects nested com-
ments. Figure 16 shows an example of C++ source code formatting and
dynamic error detection. The LPEX editor is shipped with live parsers
for C, C++, FORTRAN, Pascal, COBOL, REXX, and BASIC.

VisualAge for C++ for OS/2

Building Your Application

Compiling

e = e
‘Row 52 Column 1 Insert
I 1 2
2¢ Consiructors / destruciors
/I[e e e e e o o e e o e o o o o 2 2 2 o e
smartHouse (

unsigned long id = WUND_smartHouse,

IWindow# parent = IWindow: :desktopWindou(),

IWindow# owner = O,

const IRectangle& rect = defaultFramingSpec(),

const IFramelindow::Style& style = IFramellindow::defaultStyle (),

w
o
o

o

tine.

end hefore the end of the sour

0S/2 Live Parsing Editor

Figure 16. LPEX: Source Formatting and Dynamic Error Detection

The LPEX editor provides selective views of your code, such as a class
definition list, function list, and error list. You can also choose to show
only the lines containing a given string. The LPEX editor features all
of the functions you would expect from any editor, such as block
manipulation, a search facility, a toolbar for fast access to common
commands, and multiple views of the same file.

The LPEX editor is fully customizable. With it you can easily change
key assignments, parameters, menus, the toolbar, fonts, and colors
and write your own parser or modify existing parsers. You can extend
the capabilities of the LPEX editor if you have some REXX and C pro-
gramming knowledge.

—— What’s New and Nifty?

e Direct generation of SOM classes from C++
source code through Direct-to-SOM support e
Improved memory management component e
Facilities to trace heap of memory usage
(together with the Debugger) Locales support
e Generation of reduced debugging informa-
tion (line numbers only)

The VisualAge for C++ compiler generates highly optimized code for
any Intel® architecture from the i386™ to the Pentium™ and con-
forms to the major industry standards (ANSI C, ANSI C++ Draft
X3J16) to allow you to write portable C and C++ code. It supports the
key features of the C++ programming language, including templates
and exception handling.

Chapter 2. Getting Started in a VisualAge for C++ Environment 41

Building Your Application

42

Precompiled Headers

With precompiled headers, the compiler does not have to recompile
header files each time you change a source file that uses the header
files. Precompiled headers improve compile time. The VisualAge for
C++ compiler groups precompiled headers in a single file.

Memory Management

The entire memory component has been redesigned. New features and
functions are now available:

Overhead reduction of allocated objects

Extensive checks on entire heap with descriptive error messages
Optimal page tuning

Additional migration routines: _heapchk, heapset, _heap_walk
Support for user heap and shared memory

Transparent user heap allocations using malloc

Support for debug tiled memory

oco0o000do

The /Tm+ compiler option lets you generate additional code for all
functions, so that you can debug memory management functions such
as new, calloc, or malloc. Used together with the Debugger, this option
enables automatic heap checking each time your program stops on a
breakpoint.

Support for Locales

Locales help you define “internationalized” applications. They provide
a way of changing the behavior of your application according to lan-
guage and cultural differences, such as character sets and date for-
mats. The VisualAge for C++ compiler provides the facilities to create
and manipulate locales in your code. Such facilities include LOCAL-
DEF, to create a locale object, and ICONV, to convert a file from one
code set encoding to another. You can either reuse the locale objects
supplied with the VisualAge for C++ compiler or create your own.

Support of locales is based on the IEEE POSIX P1003.2 and X/Open
Portability Guide standards. For a detailed description of locales sup-
port, refer to the C/C++ Programming Guide.

Code Optimization

You can optimize your program by improving its execution speed or
decreasing its size. All optimizations that the VisualAge for C++ com-
piler performs are safe. The VisualAge for C++ compiler uses
advanced technologies for code optimization, such as:

VisualAge for C++ for OS/2

Building Your Application

Intermediate code linking

The intermediate code linker combines the intermedi-
ate code from several compile units into one compile
unit. Thus, because the optimizer does not have to
optimize each compilation unit separately, it performs
more efficiently for function inlining and global opti-
mizations. The intermediate code linker might also
detect errors that would cause unexpected run-time
behavior or linker errors such as:

¢ Redefinition of variables or functions

¢ Inconsistent declarations or definitions of func-
tions

¢ Type mismatch between definitions or declarations
of the same variable

¢ Conflicting compiler options
Global optimizations

The VisualAge for C++ compiler performs loop analy-
sis, dead code removal, and advanced switch analysis.

Interprocedural optimizations

The VisualAge for C++ compiler reorganizes your code
for function calls, uses registers for variables storage,
and performs instruction scheduling. The built-in
functions are optimized according to the processor

type.

See the C/C++ Programming Guide for more details on optimization
techniques.

Direct-to-SOM Support

Code reusability is one of the great promises of object-oriented pro-
gramming. The reality, however, is that if you deliver a library of C++
classes in an 0S/2 environment, it will not work in an AIX™ environ-
ment unless you recompile and relink the library. Moreover, if you
make changes in the library, it is likely that the applications using
that library will have to be recompiled. Obviously, delivering the same
library in a different programming language such as Smalltalk is not
a straightforward operation.

SOM addresses these issues and provides an environment where
reuse is a reality. SOM clearly separates the interface of a class from
its implementation to provide language independence (see Figure 17).
With SOM, you can define classes in one programming language and

Chapter 2. Getting Started in a VisualAge for C++ Environment 43

Building Your Application

44

use them in another. You can also update a SOM library without hav-
ing to recompile the client code (provided that you do not delete any
library member).

SOM objects can be shared across processes through the Distributed
SOM (DSOM) framework. Processes can be in the same or different
systems. They also can run on different platforms. The interprocess
communication is totally hidden from the programmer.

Both SOM and DSOM conform to the Common Object Request Broker
Architecture (CORBA) specification of the Object Management Group
(OMG).

Previously, to create a SOM object, you had to go through the time-
consuming process of writing its interface in a neutral language (IDL),
generating C++ bindings with the SOM compiler, and compiling the
generated C++ source code.

With the Direct-to-SOM (DTS) technology, you can generate a SOM
class from a C++ class definition. The compiler also generates the cor-
responding IDL whenever you want to access that SOM class from
another language or use DSOM. Because you are writing C++ directly,
you can benefit from the C++ features such as templates, operators,
and static members.

Although SOM imposes some restrictions on the C++ syntax, you

should be able to convert most of your C++ programs with minimal
effort.

VisualAge for C++ for OS/2

Building Your Application

Linking

Class Definition

—_—t

e Header File - (C++ compiler)

S —

Lang. Implementation

Implementation

—— What’s New and Nifty?

SOM Language Neutral
Interface Definition Lang. .
(CORBA IDL) Native Code (e.g. C-++)

[1

» IDL Interface L

~ Native SOM Support

\

Client Interface -
) "SOM Mode"
Switch On
A \ P o ‘_\“ S
Crt | ! cosoL c
Compiler i Compiler ‘ Compiler |
S e J
Y S y)
Y f ("
[Bi.nz\ry ij | Binary Ol?j | ‘L Binary ?bi | ; Bin’dfywoij ‘

Figure 17. Language-Independent Implementation with SOM

¢ Complete new linker (ILINK) ¢ New func-
tions and major performance improvements
over LINK386 e Separate handling of C++
template resolution

ILINK replaces LINK386 in the VisualAge for C++ development envi-
ronment. ILINK has been designed to work closely with the compiler
and provides better performance and optimization techniques than
link386. Although ILINK has new options and syntax, you can invoke
it with the LINK386 syntax by using the /NOFREE option. ILINK can
produce either an executable file, a DLL, or a device driver
(DRV,VDD).

Chapter 2. Getting Started in a VisualAge for C++ Environment 45

Understanding Your Code

ILINK has the following improved optimization techniques, which you
might want to use when your program is tested and stable:

Unreachable functions removal

The unreachable functions removal technique, also
referred to as smart linking, lets you remove the
unreferenced functions in your code or in the libraries
with which you are linking. An unreferenced function
is any function that you do not call directly in your
program or that is not called by one of the functions
you call. This optimization technique can significantly
reduce the size of your program, and thereby improve
its performance.

—— Technical Information!

If you are linking with a
DLL, the unreachable func-
tions removal technique will
not remove the functions
that are exported from that
DLL.

Executable packing

With ILINK, you can slightly reduce the size and
enhance the speed of your executable file by packing
the code or data segments that have similar
attributes. ILINK also provides a new option
(/EXEPACK) to compress your executable file accord-
ing to the target operating system (0S/2 2.11 or Warp).

At the development stage, you can use the debugging information

packing option to generate a smaller and therefore faster executable
file.

Unlike LINK386, which required the compiler to correctly resolve C++
templates, ILINK can be invoked independently to handle C++ tem-
plate resolution.

Understanding Your Code

46

VisualAge for C++ has features that help you understand your code.
The class browser graphically displays the structure and hierarchy of
your C++ classes. The Debugger helps you understand why your appli-
cation fails. You can use the Performance Analyzer together with the
Debugger for thread interaction analysis, deadlock detection, and per-
formance tuning.

VisualAge for C++ for OS/2

Understanding Your Code

Browsing Your C++ Hierarchy
—— What’s New and Nifty?

e New user interface for enhanced usability e
Smaller database files for faster load e Fully
customizable interface, including fonts and
colors e Ability to browse C++ source code
without compiling it (QuickBrowse facility) o
Ability to browse projects, executable files, and
libraries e Support for SOM classes generated
through Direct-to-SOM

Inheritance and therefore reuse are two of the keys to object-oriented
programming, but they come with the cost of increased complexity.
Finding the right class among the thousands available is often a tricky
task.

Browsing helps you analyze and understand which class and its asso-
ciated member functions can provide the service for which you are
looking. With the VisualAge for C++ Browser, you can navigate
through the class hierarchy, obtain the interface available to you,
locate a function, edit the source files, and access the online help for
the IBM Open Class Library classes.

The Browser is particularly useful when you develop a large project
with a team of developers. Typically, developers reuse the classes
defined in another subsystem and have to know how they can use a
particular class and the services offered by that class. Developers also
might want to check the impact of changing the prototype of one of
their functions that other developers are using.

The VisualAge for C++ Browser creates an internal representation of
your program in a so-called browser database. The database contains
full information about your program if you specified certain compile
and link options. However, for those cases when you cannot compile or
would like to browse your code before you corapile, you can use the
QuickBrowse facility. With QuickBrowse, you can generate the mini-
mum amount of information the browser requires to analyze your
code. (Some information that would be known only at compile time is
not available, such as viewing call chains.) The QuickBrowse facility is
typically useful where the project design phase has ended; that is, the
definition files (header files) have been completed, but the project has
not been implemented.

Browser Windows

The Browser can display information either as lists or graphs. When
you start the Browser, the initial window displays a list of all classes
that are defined in your executable file or library, that is, all classes
that are defined in the header files you included in your program.

Chapter 2. Getting Started in a VisualAge for C++ Environment 47

Understanding Your Code

48

For each class displayed in the initial window, you can access:

O List of members with inheritance. This option displays an incre-

mental list of all members (that is, constructors, destructors, func-
tions, and variables) of the class, as shown in Figure 18. With this
list, you develop a good understanding of the complete class inter-
face and have access to all relevant information, such as the online
documentation or the header file where these members are imple-
mented. A special notation is used for members that have been
generated by the compiler.

i= Browser - vbmainexe - List Window:1l .
 Hle]Edit* Actions Optigns Osder Windowss | Proje
§<§viewConn0 -- List Members with Inheritance 30 Items §

[3) mainviewConng
puiblic l
(B constructorsidestructors
% “mainviewConnB(void) '
3 tunctions :
void initialize ([EntryFields, benutzers)
void setSource(void)
void setTarget(void) f
it

I10bserver& dispatchNotificationEvent(const INotificationk
private i
i0bserver

Use Mouse Button 2 on top of any object to access PopUp menus

Figure 18. Browser List Window: List Members with Inheritance

Class members are usually classified according to the class name,
but you can categorize the list by either access (public, protected,
private) or type (functions, variables).

For each member function, you can display either the list or graph
of caller and callee functions, as well as the list of exceptions that
can be thrown from that member function. With the callers and
callees graph, you can develop a better understanding of the exe-
cution flow of your program, as shown in Figure 19. You can also
use this information to measure the impact on the entire applica-
tion of modifying a function.

A graph window is divided in two parts: The left side of the win-
dow shows the graph itself, and the right side of the window dis-
plays the list of objects in the graph. The list of objects can be used
to retrieve an object in a graph. It generally displays more infor-
mation about the object than is displayed on the graph itself, such
as the complete definition of a function (Figure 19). The slider on
the left side of the graph (f) is used to zoom in on and zoom out
from the graph.

VisualAge for C++ for 0S/2

Understanding Your Code

INotificationEvent
IWindow& IWindow::notifyo
4

initializePart

L - — et -
Use Mouse Button 2 on top of any object to access PopUp me

Figure 19. Browser Graph Window: Graph All Callers and Callees

QO List of friends or friendships, that is, the answer to such questions
as Whom do I declare to be my friend? and Who declared me as
being its friend?

O List of implementing files, that is, a list of header files where the
class is declared. With this list you can find the correct header file
name to include in your code when you want to use the class.

Q0 Graph of all base and/or derived classes.
Tip!

The Browser provides a graph overview window
for large graphs. From the overview window, you
can select which part of the graph you want to

display and zoom in on or out from an area of the

graph.

From the initial window, you can also display the list of all files that
your executable file or library uses. For each file, you can access the
following information:

Q List of defined objects. This option displays the list of classes,
functions, variables, and types that are defined in the correspond-
ing file.

Q Graph of all includers and includees (Figure 20.). This option is
useful for measuring the impact of modifying a header file in your
files hierarchy.

Chapter 2. Getting Started in a VisualAge for C++ Environment 49

Understanding Your Code

50

lle Edit View ctlons Optioﬂs Windaws Project o
le d \lbmcpp\mc[ud A trmg hpp -- Graph Al !ncluders

benutzer cpp
benutzer.hpp
{imsgbox.hpp
iobslist.hpp |
ireslock.hpp !
ireslock.inl
istdntfy.hpp

- listring.hpp

| itrace.hpp

E itrace.inl i

Figure 20. Browser Graph Window: Graph All Includers

If you are dealing with a large library, use the search facility for fast
access to information. It lets you scan the loaded database and find

objects according to simple criteria such as object type, access type,
class type, and function type.

Visual Builder and Browser Interaction

Visual Builder interprets and uses the data stored in a browser data-
base file. From Visual Builder, you can either read a database file or

call the QuickBrowse facility (provided that you started Visual Builder
from a WorkFrame/2 project).

You can use the browser information to:

Q Create event-to-member function or attribute-to-member function
connections. Event-to-member function or attribute-to-member
function connections enable you to call a member function of a

part whenever the corresponding event occurs (see “Connecting
Parts” on page 29).

Q Incorporate existing code with the Part Interface Editor (see
Chapter 8, “Creating Nonvisual Parts,” on page 213.)

In both cases, Visual Builder loads the list of function definitions,
which you can then reuse. You can directly access those definitions
from the various Visual Builder editors. Figure 21 shows the GUI for

creating an event-to-member connection after the browser data is
loaded.

VisualAge for C++ for OS/2

Understanding Your Code

Member Function Connection

| Access public

i<

gstatic const IRectangle defaultFramingSpec()

‘defaultTitle()
getFrameWindow ()
| initializePart()

¥

-
0K cancel | parameters.. | | Help }

Figure 21. Visual Builder: Creating an Event-to-Member Connection

Debugging Your Code
—— What’s New and Nifty?

o Support for SOM objects ¢ Debugging of child
processes o Support for deferred breakpoints e
Exceptions filtering e Automatic heap check

The VisualAge for C++ Debugger lets you debug your 32-bit C or C++
code at the source level. You can also use it to debug child processes
and SOM objects generated through DTS or the SOM compiler.

The Debugger provides advanced features for breakpoint manage-
ment, memory management, and functions monitoring.

Breakpoint Management

You can set a breakpoint at any place in your program where you want
to stop execution. The Debugger supports simple breakpoints, such as
stopping when a certain line number in a source file is reached. It also
supports more complex breakpoints, such as stopping program execu-
tion when a certain address in memory is modified or putting condi-
tional breakpoints on variables. (For example, you can stop execution
whenever a variable in a loop reaches a given value.)

Chapter 2. Getting Started in a VisualAge for C++ Environment 51

Understanding Your Code

52

The Debugger supports the following breakpoint types:
Line Stops program execution at a specific line number

Function Stops program execution when the first instruction
of the corresponding function is called

Address Stops program execution when a specific address is
reached

Change address Stops program execution when the contents at a
specific address are changed; you can specify either
an address or a variable name to set such a break-
point.

Load occurrence Stops program execution when the program loads
the specified DLL.

When working with DLLs, you can defer breakpoints so that they are
activated only when the corresponding module is actually loaded. This
option is supported for line and function breakpoints.

You can manage all active breakpoints from the Breakpoint List win-
dow shown in Figure 22.

Windows

File Edit Set Options Help
Tupe Address Function Executable Status
Change 4 bytes @ 2F0000 Active

F T

benutzer: :benutzer (IString, IString, int) UBMAIN. EXE Active|

12A88

Load GPPOVO3.DLL Active E

i

Figure 22. Breakpoint List Window
Memory Management

With the check heap when stopping option, you can perform memory
checks each time the program stops executing, for example, when a
breakpoint is reached. The check heap facility detects memory block
allocation problems such as writing data outside a block segment or
freeing the same memory block twice. When the Debugger detects a
problem, the program stops executing and displays the exact line
where the problem occurred.

VisualAge for C++ for 0S/2

Understanding Your Code

Functions Monitoring

Advanced monitoring functions let you get a complete view of your
program’s behavior. You can simultaneously track the call stack, stor-
age status, and registers value as well as analyze the graphical win-
dows if you are debugging a PM application:

Call Stack window

The Call Stack window dynamically lists all active
functions for a particular thread in the order in which
they are called.

Storage window

The Storage window dynamically displays the storage
contents and storage address.

Registers window

In the Registers window, you can display and alter the
contents of registers.

Windows Analysis window

With the Windows analysis window, you can graphi-
cally display the relationship among the graphical
windows that are created when you run a PM applica-
tion.

Debugging Session Management

For each application that you debug, you can choose to save the cur-
rent debugging session. The next time you debug that application, the
Debugger tries to restore the saved session, including breakpoints and
the various windows that were active when you stopped your previous
debugging session.

Chapter 2. Getting Started in a VisualAge for C++ Environment 53

Understanding Your Code

Performance Analysis

54

—— What’s New and Nifty?

e Product name: the Performance Analyzer
was formerly known as EXTRA. ¢ Addition of
a window manager to navigate among the dif-
ferent views of your program e Dynamic man-
agement of trace generation (start and stop
buttons) e PerfStart() and PerfStop() func-
tions to insert in your code for better trace
granularity e Ability to trace up to 64 threads
o Ability to trace user and system library calls

The Performance Analyzer provides you with facilities to improve
application performance or to detect problems at run time that are dif-
ficult to find with a traditional Debugger.

When compiling and linking your program with the correct options,
you create hooks in your program. The Performance Analyzer uses
those hooks to create a trace file. The hooks cause a small monitoring
function to be called inside every program’s callee function. The moni-
toring function stamps the event, dumps it into a trace file, and then
actually calls the function. Because the monitoring function is called
in the program’s address space, the trace overhead is minimal. More-
over, all chronological diagrams take the trace overhead into account
and are therefore accurate. The Performance Analyzer uses a high-
resolution clock (provided by the CPPO3PA.SYS device driver), which is
loaded at boot time in your CONFIG.SYS file. The DEVICE statement is
added to your CONFIG.SYS file at installation time.

Customizing Trace Generation

The Performance Analyzer views applications as a set of components.
A component can be the executable file itself, a DLL, an object file, or
even functions. You can influence the size of a trace file by enabling
components to be analyzed inside an application.

In you have a multithread program, you can exclude threads that you
do not want to trace and select the call depth for those threads. The
maximum number of threads you can trace simultaneously is 64.

If you need better trace granularity, you can modify your program
source. The Performance Analyzer provides two functions calls: Perf-
Start() and PerfStop(). You place the calls anywhere in your code to
start and stop trace generation.

The PERF(string) macro lets you create user events in the trace file.

The string you pass as a parameter is dumped into the trace file dur-
ing program execution. User events in the call nesting, statistics, and

VisualAge for C++ for OS/2

Understanding Your Code

time line diagrams appear as diamonds. You also can trace system call
events by linking with specific libraries, such as _doscall.lib or
_pmgpi.lib.

Performance Analyzer Diagrams

From the trace file that it creates, the Performance Analyzer provides
several diagrams that you can use to time and tune applications, trace
thread interactions, find where a program hangs, and detect dead-
locks. Filters allow you to temporarily reduce the amount of data dis-
played in a diagram or graph. The filtering options may vary from one
diagram to another but are essentially based on thread numbers and
function names.

Call Nesting Diagram. The call nesting diagram shows the trace
file as a vertical series of function calls and returns. Each thread has
its own starting column of functions. Use this diagram to build an
understanding of thread interaction in your program—each context
switch between threads is represented by a dotted line—and follow
the flow of function calls in your application.

To reduce the amount of data displayed by the call nesting diagram,
use the pattern recognition option, which looks at a single thread and
finds patterns of calls and returns. The patterns are displayed as
curved arcs, and the number of repetitions is indicated on the right-
hand side of the corresponding are, as shown in Figure 23. The pat-
tern recognition view helps you isolate patterns of code that you reuse
frequently. Then, for better performance, you can group instructions
belonging to a pattern into the same code segment.

2 VBMAIN.TRC - Call Nesting : .
| Trace fle Edit View Options Project Help

B . ‘ = EE :

Figure 23. Call Nesting Diagram Window

Chapter 2. Getting Started in a VisualAge for C++ Environment 55

Understanding Your Code

56

Dynamic Call Graph. The dynamic call graph is a graphical view of
the application execution, where functions and functions calls are rep-
resented, respectively, by nodes and arcs. Selecting a graph node gives
you access to execution statistics for the corresponding function and
filtering capabilities such as “Who calls me?” or “Whom do I call?” (See
Figure 24.) The dynamic call graph uses color to represent the time
spent in each node and the number of calls in an arc. For example, a
red-colored node indicates that more than one-half of the total execu-
tion time was spent in that node.

wscution thue s 394020 ms. 0%
T, ooy 5o Waziams oy
Himiber of zalls 1

ho catts me | Whom do'l all

Figure 24. Dynamic Call Graph Window

Execution Density Diagram. The execution density diagram dis-
plays execution time divided into fixed horizontal time slices. If you
compare this graph to a table, you can see that each row is a time slice
and each column is a function called during the time slice. Color is
used to indicate the percentage of the time slice that the function uses.

Statistics Diagram. The statistics diagram summarizes all data
about functions or executables. Functions can be sorted according to
execution time, time on stack, and minimum and maximum time for a
call (Figure 25). The trace overhead time is also listed.

VisualAge for C++ for 0S/2

Understanding Your Code

Summary

Number of trace buffer flushes: 3
Total trace time excluding overhead: 142877956 tics or 119.745 seconds
Trace overhead: 527936 tics or 0.442 seconds

Details

Function xecution Time Time On Stack | Minimum Call | Maximum Call

mainview:mai] } 020 | 294,620
mainview:defa 34.411

benutzer::asSt 28.389

Figure 25. Statistics Window

Time Line Diagram. The time line diagram displays the sequence of
nested function calls and returns. It is similar to the call nesting dia-
gram, with the exception that time is represented on the diagram.
Time is divided into horizontal time slices, and function names appear
on the right-hand side of the diagram.

Windows Correlation. All chronologically scaled diagrams (time
line, call nesting, and execution density) can be correlated according to
a particular event or specific point in time. Thus, you can select a time
period in the time line diagram and use correlation to get a different
view of it in the call nesting diagram.

Chapter 2. Getting Started in a VisualAge for C++ Environment 57

Understanding Your Code

58

VisualAge for C++ for 0S/2

Part 2

If you only have a hammer, all your problems look like a nail. (Proverb)

In the rest of this book you will learn how to build a real-life applica-
tion, the Visual Realty application, that supports real estate agents
who manage properties and customers. A customer of a real estate
agency is either a seller who wants to sell property and asks the
agency for assistance or a buyer who wants to be the proud owner of
new property. So, an agency must keep track of properties that are
available for potential buyers and mediate between sellers and buy-
ers. Potential buyers have particular notions of the kind of property
they want, so an agent must be able to search for property that
matches their notions.

Our goal is not to build a complete application that would solve all of
the problems of real estate agents. Rather, we want to illustrate how
to apply VMT and use VisualAge for C++ tools to build a good object-
oriented software system.

59

60

In Part 2 we analyze and design the Visual Realty application to
develop static and dynamic models that you will implement with
VisualAge for C++ in Part 3.

VisualAge for C++ for OS/2

Analysis lets you stay ignorant, but with much more detail.

- (The Financial Procedures Handbook, Apocrypha)

To illustrate the process of object-oriented application development we
can compare it to the process of writing a novel, because there are as
many potential domains to describe in a novel as there are different
software domains. We focus on novels that entertain (but not dime
novels) because with more complex literature we might lose sight of
our actual goal. We do not want to teach dramaturgy or style. Rather,
we want to show what the art of writing novels and the art of develop-
ing software have in common (from the distorted points of view of com-
puter specialists).

Without playing down the complexity inherent in software develop-
ment, we want to demonstrate that you can intuitively learn how to
apply object-oriented methods. You should not expect, however, to
derive benefits from using this approach at the very beginning. It is
obvious that the reuse of code in your first project is not of as great
importance as it will be in future projects. As usual, you must gather
experience yourself or hire someone who has experience. Likewise,
you cannot expect to write a successful novel if you start writing now.

61

Collecting the Material

In the sections that follow you play the role of a novelist, and we are
assigned to be the software developers applying the approach sug-
gested by VMT. We assume that, as a novelist, you do not write as a
hobby but want to sell your book in bulk, just as we want to sell our
applications to become rich and famous. If you were to write novels
Jjust for your private fun, you could write whatever you want without
obeying any rules. The same would be valid for us: If we created appli-
cations to satisfy our own needs, nobody would blame us if we wrote
our code in the old-fashioned, poorly documented, spaghetti-like free-
style.

Before we proceed, let us state the big difference between writing nov-
els and developing software applications: Writing novels is an art;
developing software is applied science. Therefore, although object-ori-
entation aims to “industrialize” software development some day,
assembly-line production is not desirable for the process of writing
novels (but we notice such a trend when we look at light fiction). We
want to be able to enjoy future novels and admire an author’s particu-
lar style of writing that fills his or her characters with life and
unleashes our imagination. Nevertheless, we want to compare the two
processes because software development undeniably involves the
developer’s creativity and imagination.

Although we cannot partition the preparatory work of an author into
analysis and design phases, we discover that preparing to write a
novel and the preliminaries of software development have a great deal
in common. For example, the preparations take considerably more
time than the actual writing or coding. In this chapter we deal with
the analysis phase, and in Chapter 4, “Designers at Work,” on page 83,
we focus on the design phase.

Collecting the Material

62

If you put yourself in an author’s place, how would you proceed? First
of all, you would define your subject, answering the following ques-
tions: Would you like to write a historical, contemporary, or science fic-
tion novel? Which contexts should your novel cover? (Contexts include
the historical period, the location, and the culture.) Should your novel
be a romance, a crime story, a biography, or a drama? If you do not
know what you are going to write about, you simply cannot begin, and,
if you have only a vague idea of the contents of your book, you should
not begin, unless you want to rival some intractable software develop-
ers.

The decision that has the greatest impact on your novel concerns the

subject of the main story. This decision influences your style as well as
the selection of the participating characters. You might combine several

VisualAge for C++ for OS/2

Collecting the Material

subjects; for example, if you write a biography, your protagonist proba-
bly experiences the vicissitudes of life, which include love, jealousy, pas-
sion, grief, comedy, and despair, to name a few.

First, you certainly want to create an outline of the main story, that is,
the thread of the entire novel. Your publisher probably wants to look at
your abstract to decide whether your story is promising or a reject. You
should formulate your outline clearly, so that your publisher can follow
it. Surely, you will not succeed in formulating your outline on first try.
You probably will read it, delete some sentences, rearrange it, or even
start all over again. Your final epitome reveals what your novel essen-
tially is about and serves as a guide, as you further develop your novel.

Let us consider what you should include in your outline of the main
story: You should define certain “constants” before you start writing,
namely, the location of the action, the historical period, the principal
characteristics of the leading roles, and the thread of the plot. To create
a successful story you should research the characters of your novel and,
if possible, inspect the locations where the events take place.

Problem Domain

When we start developing a software application, our first task is to
analyze the specific problem domain, distinguish it clearly from the
real world, but not worry about any constraints that the implementa-
tion environment would impose; in object-oriented application devel-
opment we call it object-oriented analysis (OOA). The result of our
analysis can be directly compared to the outline for your novel, as it
answers the “what?” question. In other words, we define the complete
function of the application and the system boundaries. Initially, we are
probably better off than you are, because our customers tell us what to
do; that is, they give us their requirements for the application.

After we have collected all material that is relevant to the system, we
must arrange and put the finishing touches on our customer’s require-
ments. Generally, the specifications lack completeness or exactness
and show redundancy. To complete the requirements, we must learn
about our customer’s business domain and its terminology. On our
first try seldom (between you and me, never) do we succeed in cor-
rectly defining what we should develop. Through ongoing communica-
tion with our users, however, we gradually acquire both the knowledge
and understanding that are essential to fulfilling our task.

The deliverables of the analysis phase help us understand the problem
domain as they provide different but complementary views or descrip-
tions of the system that we develop. The deliverables are the complete
and exact requirements specifications, the use case model, the
sketches or prototypes of the user interfaces for each use case, the

Chapter 3. Analysts at Work 63

Collecting the Material

class dictionary, the CRC cards for all classes, the static object model,
and the dynamic model (refer to Visual Modeling Technique—Object
Technology Using Visual Programming by D. Tkach et al.).

Requirement Specifications

64

We developed seven problem statements when we first thought about
the daily work of a real estate agent:

Manage buyers

Manage sellers

Manage properties

Manage sale transactions

Track earnings

Document activities

N ;e D

Exchange data with the agency’s computer

To keep the implementation simple, we established the following con-
straints:

0 The application would not cover

> Seller management
> Sale contracts
> Documentation of agent activities

O The commission for an agent and the down payment for a property
would be fixed values computed from commission and down pay-
ment rates.

0 Agents and buyers would negotiate directly concerning the sale.

We know that our seven problem statements will not drive us to seize
the closest keyboard and start hacking the code, because they are
rather vague. So, we must define more precisely what we mean. Pref-
erably, we formulate the definitions together with our customers,
because they know best what they want.

In fact, we visited a real estate agency and interviewed two of the
agents to learn how they do their job and how computers might help
them. Our interview with the agents led us to refine the seven prob-
lem statements, as you can see in the 12 requirement specifications
listed below. Twelve requirements specifications can in no way handle
the real estate business. If, however, we had to describe everything
that a real estate agency requires, this book would be a multivolume
encyclopedia, and you would have to read a huge amount of analysis
and design scribblings before you could learn VisualAge for C++.

VisualAge for C++ for 0S/2

Collecting the Material

You also can see, in the requirement specifications listed below, the
transition from the rather simple, initial problem statements to the
elaborate, precisely defined requirement specifications (for example,
we explode the first statement into three specifications).

1. Record, update, and delete buyer information and prefer-
ences.

Here, the terms buyer information and buyer preferences must be
further defined. As you know from Chapter 1 (“Objects” on page 6),
real-world objects have a tremendous number of attributes, but
our application must concentrate on those that are most impor-
tant for the problem domain. (The process whereby one tends to
concentrate only on the relevant information for the problem
domain is also known as abstraction.) So, we decide that buyer
information includes the buyer’s name, identification (social secu-
rity number or driver’s license number), telephone, address, and
household income. Buyer preferences, which describe a buyer’s
particular notion of a property, include price range, size range (in
square feet), number of bedrooms, number of bathrooms, number
of stories, type of cooling, and type of heating.

2. Search buyers by name.

It should be possible to search buyers by last name. It should also
be possible to do a “pattern” search; for example, look for all buy-
ers whose last names start with “Que.”

3. Show the buyers who are interested in a selected property.

From a list of properties, the agent can select one and retrieve the
buyers whose preferences match the property characteristics. The
buyers should be listed so that the agent can select one to retrieve
the detailed information.

4. Record and update property information.

Here, registration number, address, area, number of bedrooms,
number of bathrooms, number of stories, size (in square feet), type
of cooling and type of heating are of interest. Further, a second cat-
egory of information is relevant for a property, namely, marketing
information, such as price, price per square foot, commission for
the agent, commission rate, number of days the property has been
on the market, down payment rate, down payment value, and sta-
tus (available, sale pending, or sold). Note that some attributes of
the property information match the attributes of the buyer’s pref-
erences. Additional features or information about other categories
that do not fit with the preceding attributes can be entered as tex-
tual description. A video that features the property completes the
property information.

Chapter 3. Analysts at Work 65

Collecting the Material

66

5.

10.

Show available properties of interest.

List the properties that have the “available” status and match
some specific criteria, such as area, price range, size range, num-
ber of bedrooms, and number of bathrooms. These properties
should be listed so that the agent can select one to retrieve the
detailed information

Show affordable properties.

List the properties that have the “available” status and that a
selected buyer can afford according to his or her income. The mort-
gage calculation should remain simple.

Display description or video of a selected property.

This feature provides potential buyers with a first impression of
the property. On the basis of this first impression, they can either
take a closer look at the property or avoid visiting it in vain.

Show the properties in which a selected buyer is interested
(based on his or her preferences).

From a list of buyers, the agent can select one and retrieve the
properties whose characteristics match the buyer’s preferences.
These properties should be listed so that the agent can select one
to retrieve the detailed information or show the video.

Initiate, confirm, or cancel a sale transaction.

The agent initiates a sale transaction when a buyer decides to buy
a desired (and affordable) property. The agency must go through
several processes until the buyer is finally the owner of the prop-
erty. For example, it must determine whether the buyer has liquid
assets or is creditworthy, but the Visual Realty application does
not cover these processes. Instead it creates an agreement form,
which states that the property is reserved for the buyer for 10 days
from the date of signature. During that period the property is
marked as “sale pending.” The agreement also states that the
buyer has provided a down payment as proof of good faith. If the
transaction is canceled, the agency returns the down payment,
marks the property as “available,” and destroys the agreement
form. If the transaction is confirmed, the property is marked as
“sold,” and the agent’s account is credited with the proper commis-
sion.

The agreement form contains the property’s registration number,
area, address, and price; the buyer’s identification, name, and
address; the amount of the down payment; and the date of the
agreement.

Search agreement forms by date.

This function enables the agent to list all properties marked “sale
pending” and to examine the associated sale transactions.

VisualAge for C++ for OS/2

Thread and Subplots

11. Show how much commission the agent earned during the
current month.

We assume that there is a one-to-one relationship between agent
and computer, so the application shows the sum of the commis-
sions for the sold properties.

12. Receive from the agency’s computer or send to the agency’s
computer properties, customers, and sale transaction data
that is relevant for the agent.

The agency should be aware of its agent’s activities, track the sta-
tus of each property, and acquire information on new prospects.

All information about properties, buyers, and agreement forms is
transferred to and from the agency’s database. We must consider
that a real estate agency usually employs more than one agent.
The agency is responsible for maintaining the database, keeping it
synchronized, and assigning properties and buyers to agents.

Just as your publisher should agree with your abstract, our customers
should understand what we write down and fully agree with the func-
tions of the system. If they do not agree, we must add other specifica-
tions or redefine them. At this stage of analysis, we iterate the
refinement of the specifications to ensure that the problem definition
is accurate.

Thread and Subplots

Your first cut must be appealing enough to convince your publisher of
the potential success of the book. Before you deliver your work, you
should consult with some reviewers, perhaps a friend or your spouse
who can assess whether the flow of the story is comprehensible. Note
that at first you create the skeleton of the story, and only later do you
embellish it.

In your novel you not only tell the main story, you also delineate several
subplots that run concurrently or sequentially. Subplots make the story
more interesting, create tension, and make your readers stick to the
book. While you sketch the thread of your story, you focus on the plots in
which your protagonist is involved. If you wanted to summarize
Michael Ende’s book, The Neverending Story, you could do so very con-
cisely: a boy is absorbed by a book and seeks out a new environment.
When he learns that his world is going to vanish, he tries to rescue it
with his imagination. (Do not go to your publisher with only two sen-
tences!) Michael Ende used several hundred pages to embroider and
embellish his story; that is the actual art of writing.

Chapter 3. Analysts at Work 67

Thread and Subplots

We software developers, however, must ensure that our project does
not turn out to be a never-ending story. We have already collected and
completed the customer requirements. At this stage, we must discuss
with our users all services of the system, because our first model must
capture all of their functional requirements. We group the require-
ments into use cases, which are ...behaviorally related sequences of
transactions in a dialogue with the system (Object-Oriented Software
Engineering. A Use Case Driven Approach by Jacobson et. al, p. 127).

Use Case Model

68

We write down use cases in the form of a dialog with complete sen-
tences and assign a unique title to each. The dialog represents an
interaction between the application that performs the function and
the user of the system. According to Jacobson, a use case does not con-
tain conditional branches, that is, each use case describes one distinct
sequence of functions. If a function of the use case depends on the suc-
cessful completion of a preceding function, we must define a second
(alternative) use case that covers the event when the preceding func-
tion fails. In this case, an “extend” relationship represents the exten-
sion between the two use cases. In addition, a use case behavior can be
embedded in other use cases, leading to a “use” relationship
(Figure 26). Actually, to write the use cases we present the require-
ments specifications from the different users’ points of view. In our
case we only have one user: the agent.

. [E=ree

extends™ ~ extends

\ use case 4

Actor ‘ ./ Actor

Figure 26. Use Case Representation

Throughout this book we focus on realizing problem statement 3, that
is, Manage properties, so the following examples of use cases relate to
requirement specifications 4 and 5.

VisualAge for C++ for OS/2

Thread and Subplots

Record Property Case

Agent: Call the Record property function.

System: Present a form that the agent must fill in to specify all of the
required information for a property.

Agent: Fill in the form and click on an OK button or the like.

System: Verify the information and store it if it is correct.

Property Search Case

Agent: Call the Search property function.

System: Present a form that the agent must fill in to specify the
items of interest.

Agent: Fill in the form and start a search.

System: Present the properties that match the specifications.

Jacobson also designates users of the system as actors to emphasize
that users play roles. (Object-Oriented Software Engineering. A Use
Case Driven Approach by Jacobson et. al, p. 171). A certain role, or
type of user, is assigned to an actor. Usually, our application supports
several actors: the “normal” actor, supervisors, and system adminis-
trators. The normal actor of the Visual Realty application would be the
agent (Figure 27). The supervisor would be the manager of the agency,
and the system administrator would be an office worker who cares
about the consistency of the property database. Consequently, one per-
son can play several roles. For example, John is a real estate agent
who calls functions of the property management and, as he sometimes
works in the office, of the system administrator, but he is one single
user of the system. On the other hand, Mary and Denise, the general
managers of the agency, are only interested in calling the supervisor
functions to control John; they are two users playing one role. Gener-
ally, the use cases that normal actors activate make up the system’s
principal functions, which we focus on during the analysis phase. That
is why we interviewed real estate agents and not their managers.

Actors are not necessarily humans; they can be external devices or
other computer systems (Figure 27). Each use case is related to at
least one actor. The set of all use cases describes the entire function of
the system. Together with the set of all actors, it constitutes the use
case model. Every actor must be connected to at least one use case,
and vice versa; an unconnected actor or use case would be superfluous.
In addition, an actor is outside the system; that is, it does not belong
to the problem domain, so we do not describe its function in detail.

Chapter 3. Analysts at Work 69

Thread and Subplots

L

Agent

il 44“(\

Update Property

Property

Figure 27. Visual Realty Use Cases

The use case model is fundamental, as it is the collection of all require-
ments and serves as input for all subsequent models that will be
developed, including the final model—the source code. The system’s
overall function is reflected in the use case model, and we take the use
cases to develop the analysis model, the desigr model, and the source
code. Every model can be tested against the use case model for com-
pleteness and consistency. If we must change or enhance the applica-
tion, we do so by first adding or changing one or more use cases and
then changing the other models accordingly.

The use case model also helps to maintain the traceability of the sys-
tem because we know from which use case each component of the later
models derives. Remember that traceability is the most important
characteristic of our system, as it enables us to make corrections and
modifications in a straightforward manner.

User Interface Prototype

70

Because we have described the system’s functions in the form of use
cases, we can envision the user interface of the application prototype.
We know which function each actor can invoke, so we can illustrate for
potential users what the screen might look like (Figure 28). We can
sketch the interface on white paper and then (if we are skilled enough
and well equipped), start Visual Builder and paint the screens right

VisualAge for C++ for OS/2

Defining Roles

before our customer’s eyes. Sometimes, a prototype of the user inter-
face makes the customers bubble over with a wealth of ideas, because
they finally see what they can do with computers. In this case, we
should stay cool and not promise too much....

Property Information Video Marketing Information
Real Estate Type flat Price |:’
house
casle Price/Sqft :l
Price Range 0- 50000 D
50000 - 100000 ays on Market
10000 - 150000
Size Range Down Payment Rate I:I

0- 50
50 - 100
100 - 150

Down Payment I_—_I
Stories I:
E] Commission Rate |:I

Optional Criteria

[JParking []Garden Pool Commission |:|

Figure 28. User Interface Samples

We suggest starting with the most important use case and developing
the interface with a top-down approach; that is, begin with the main
screen and then define the secondary windows, dialog boxes, and pop-
up menus. Again, we come to the best solution after some iteration.

Defining Roles

Before you start writing, one of your important decisions is the selection
of the characters of your novel. Initially, you only rough out their traits;
you refine them later. Barry Morrow, who wrote the screenplay for the
movie Rain Man, says: “Creating a character is like shaping a lump of
clay, or like whittling a stick.” First, the character is rather amorphous;
that is, you have only a vague idea of his or her being. Then, the first
broad strokes begin to define the character, and you add emotions, val-
ues, and attitudes to provide depth. You also can infuse your character
with conflicting behaviors to increase the interest and tension of your
readers (for example, your character is a tough broker who sentimen-
tally loves his or her children,).

Chapter 3. Analysts at Work 71

Defining Roles

To create a novel, you can select from several patterns, and the pattern
chosen determines the traits of your characters. If you decide to write a
romantic novel, you will deal with love, fidelity, affection, sacrifice, and
yearning on the one hand, and infidelity, indifference, and heartless-
ness on the other hand. If you decide to write a crime novel, you will
deal with cruelty, loneliness, revenge, as well as heroism, justice, and
readiness. You can mix several patterns within your novel to make it
more interesting, but the main thread follows one distinct motif.

Patterns and Types

72

The patterns for software systems as well are numerous and varied.
The machine control pattern provides a modest user interface that
consists only of some switches, sensors, and digital or analog indica-
tors but must react very quickly to changing process states; sometimes
a delay of 1 millisecond can have fatal consequences. The business
graphic pattern must provide a highly elaborate user interface, but
the response time is not so crucial. The compiler pattern must hold a
lot of information during run time, whereas its user interface is poor,
and the response time is of (almost) no importance.

The pattern of the application that we develop determines which
object type we must primarily use in our system. Jacobson defines
three object types: interface objects, which are responsible for commu-
nicating with the world outside our system; entity objects, which
mainly store information; and service objects, which control the flow of
operation. Highly dialog-oriented applications primarily use interface
objects, data-oriented systems primarily use entity objects, and ser-
vice objects prevail in function-oriented applications.

Do you recognize the correspondence between your characters and our
objects, and your characters’ traits and our objects’ types? As our com-
puter environment is rather unemotional, we deal with only a few
object types but many objects. We notice that for each actor (remember
that an actor is a user or device outside the system) there must exist
at least one interface object, as an actor communicates with our sys-
tem. Our system also contains at least one entity object, which holds
the current state of the process that is running. Service objects are
necessary only if we cannot clearly assign a certain function to an
entity or interface object or want to guide our user through a sequence
of operations.

VisualAge for C++ for OS/2

Defining Roles

Finding Objects

To find the objects of our system as well as their attributes and func-
tions, we must analyze the requirements specifications syntactically
and semantically. As a rule of thumb, we can say that nouns in a for-
mulated sentence represent objects, adjectives represent attributes,
and verbs represent functions.

So, let us have a look at requirement specification 1: Record, update,
and delete buyer information and preferences. This specification tells
us that we must deal with buyers who have information and prefer-
ences, and the user should be able to record, update, and delete that
data. If we obey our rule, we would come up with three objects (Buyer,
Information, and Preference), but we already have found the famous
exception to the rule, because some nouns can represent attributes.
And a Buyer object with information and preference attributes sounds
reasonable because information and preference are tightly coupled to
the buyer, as we can see from the context of the requirement specifica-
tion.

Another exception to the rule: synonyms. Often, we encounter syn-
onyms for an object because we interview different people, or we pick
up information here and there and write it down, each of us in our own
terms. Thus, during the search for candidate objects and their proper-
ties, we must homogenize and structure the requirement specifica-
tions and agree on common terms.

Requirement specification 2, Search buyers by name, confirms that
name is an important attribute of the Buyer object and introduces the
search function that must be applied for a set of buyers.

Specification 3, Show the buyers who are interested in a selected prop-
erty, reveals a new candidate object, namely Property. As the business
of real estate agencies is about properties, there is no doubt that prop-
erty is a real object. In addition, this specification hints that there is a
link between the Buyer object and the Property object. The link is
based on the property characteristics. We come back to links between
objects in “Defining Interactions and Relations” on page 76.

Specifications 4 through 7, Record and update property information,
Show available properties of interest, Show affordable properties, and
Display description or video of a selected property, tell us which
attributes are necessary for the Property object and provide informa-
tion on a second link between buyer and property based on the buyer’s
income. Specification 8, Show the properties in which a selected buyer
is interested, also indicates a link between buyer and property. The
link is based on the buyer’s preferences.

Chapter 3. Analysts at Work 73

Defining Roles

Specifications 9 and 10, Initiate, confirm, or cancel a sale transaction
and Search agreement forms by date, introduce the Sale Transaction
object with the agreement form and date attributes. Specification 9
states that the agent initiates a sale transaction when a buyer decides
to buy an affordable property. It introduces the Agent object and
reveals a link among buyer, property, and agent. The agent manages
information on buyers and properties. This leads us to consider two
other links among these objects.

Finally, specifications 11 and 12, Receive from the agency’s computer or
send to the agency’s computer properties, customers, and sale transac-
tion data that is relevant for the agent and Show how much commis-
sion the agent earned during the current month, describe three
additional service functions.

So, through this syntactical analysis we discover the following objects:
Buyer, Property, Sale Transaction, Agent. The next step is to group the
objects into classes. If the problem domain is small, as it is in the
Visual Realty application, every object typically maps to a class. If we
include the management of sellers in the problem domain, we could
group the Seller and the Buyer objects into the Customer class.

Class Dictionary and CRC Cards

74

The traits of the characters in your novel are unveiled in the way they
think, talk, and behave. It would be worthwhile to establish a fact file
for every character in your novel. The fact file would include, for exam-
ple, the particular behaviors, dreams, and appearance of each charac-
ter. If you have a talent for drawing, you might even sketch your
characters. The goal is to create vivid characters who have consistent
traits and with whom your readers can identify. For the most part, the
characters impel the action; sometimes, however, some fateful events or
coincidences give a fresh impetus to the course of the story.

As we mentioned earlier, we software analysts must deal with actors
who are outside the system; they are users of the system and the main
initiators of the flow of the system’s functions, but they do not execute
the functions themselves. The object-oriented approach assigns the
responsibility of executing functions to objects.

Class Dictionary

As software analysts we also must set up a fact file. Ours is a class dic-
tionary that contains an entry for every class. As you can read in
“Classes” on page 7, classes describe the attributes and functions for a
certain group of objects. Thus, the entry in the dictionary describes the
class responsibilities and the attributes that the class must have. The
class dictionary helps us correctly define and develop the classes and

VisualAge for C++ for OS/2

Defining Roles

serves as a means of communication with our customers. The defini-
tions and responsibilities must be formulated in complete sentences to
create a stable base for our object model. We must avoid “woolly” dic-
tionary entries from the beginning, so that we can rely on our classes
and regard each entry as a binding contract. We can also see whether
the existence of a certain class is justified: If we cannot assign any
responsibility to a class, we can remove it.

CRC Cards

Wirfs-Brock suggests the use of CRC cards, which can be regarded as
extended class dictionary entries because they describe the responsi-
bilities and collaborators of a class. To save some paper or files on our
hard disk, we decide to combine the class dictionary and CRC cards so
that a CRC card contains not only the name of the class but also its
complete description. We also suggest omitting the default functions
that exist for almost every class: create, delete, and update. However,
some classes depend on those functions. For example, as you can see
in Table 2 and Table 3, we cannot delete a buyer who initiated a sale
transaction that has not been canceled or confirmed.

Table 2. Extended CRC Cards for Buyer

Description Person who wants to buy a property

Attributes 1D

name
telephone
address
income
preferences

Responsibilities Collaborators

delete Sale transaction

Chapter 3. Analysts at Work 75

Defining Interactions and Relations

Table 3. Extended CRC Cards for Property

Description

Real estate managed by the agency

Attributes

1D

address

area

number of bedrooms
number of bathrooms
number of stories
size (square feet)
cooling type

heating type

textual description
video

price

price per square foot
commission
commission rate
down payment rate
down payment value
number of days on the market
status

Responsibilities

Collaborators

search

Buyer (preferences)

Table 4. Extended CRC Cards for Sale Transaction

Description Recorded information for the business process sale
Attributes date
agreement form
buyer identifier
agent identifier
property identifier
Responsibilities Collaborators
initiate Property
cancel Buyer
confirm

Defining Interactions and Relations

The characters in your novel do not live in isolation; they establish
relationships among themselves. Before you start writing, you outline
when your characters meet with other characters and determine
whether these meetings have any effect on the subsequent action. The
relationships may create or resolve conflicts and increase suspense and

76

VisualAge for C++ for OS/2

Defining Interactions and Relations

expectation. Most importantly, you must synchronize the sequence of
the encounters. Some encounters have more influence on the behavior
of a person than others. Some can even completely change a character.

You must take into consideration that when you deal with iwo charac-
ters who have a relationship, there are two conflicts from each charac-
ter’s point of view. If another character appears—you might think of a
love triangle—you must manage six conflicts, as each of the characters
has two relationships.

To keep track of the dynamics, you will want to record encounters and
current and future relationships in your fact file. If you must handle a
more complex constellation, you will want to make some sketches on a
piece of paper that visually document the connections. The relation-
ships are not necessarily of the real world; they could be a figment of
one’s imagination.

During the software analysis phase we build static and dynamic mod-
els that illustrate, respectively, the interactions and the relationships
or links among objects.

Interactions

VMT applies two different kinds of diagrams to form the dynamic
model: the event-trace diagram and the state-transition diagram. The
event-trace diagram describes how the participating objects interact
during the execution of a use case. We must create such a diagram for
each use case to gain an overall view of the system’s functions. We can
then summarize all functions or responsibilities with their parameters
that are related to a particular object. Because several people might be
involved in creating the diagrams, the names of the functions and the
number and sequence of their parameters must be homogenized. The
diagram (Figure 29) represents objects as vertical bars and the events
as a horizontal link between the objects.

Chapter 3. Analysts at Work 77

Defining Interactions and Relations

Ul Object aProperty Object

select ‘create property'

request characteristics, price,

commission, status, address

enter characteristics, price, verify

/ commission, status, address char

Y

create

4

return 'OK’
User

return 'create OK"

System Boundary

Figure 29. Event-Trace Diagram for the Record Property Use Case

The state-transition diagram focuses on one object only, regarding it
as a finite state machine. It shows every state that the object takes on
as the result of an executed function. Each object has an initial state,
one or more intermediate states, and, optionally, a final state. Each
state is implemented as a distinct value of an attribute of the object.
The diagram represents the states as nodes and the event that causes
the change of the state as an arc between the original state and the
resulting state (Figure 30).

78 VisualAge for C++ for 0S/2

Defining Interactions and Relations

, Start

ListForSale

InitiateSale

Available Sale Pending

CancelSale

ConfirmSale

CancelListing

Stop

Figure 30. State Transition Diagram of Property Status

To avoid having to develop an overwhelming number of diagrams, we
are interested only in objects with state changes that are significant
for the process flow. A negligible state change would be when the age
of a buyer switches from 39 to 40 (although it is of some importance for
the person concerned); an important state change would be when the
age of a sale agreement form switches from 9 days to 10. We check the
state-transition diagram against every event-trace diagram in which
our object is involved to ensure completeness and consistency.

Relationships

The static object model, often simply called the “object model,” shows
the hierarchy and the coherence of the objects. The coherence is the
static relationship, also called the association, among the objects.
VMT adopts Rumbaugh’s notation to draw the object model and the
associations (Figure 31 and Appendix B, “OMT Notation,” on page
343). We assign meaningful names to the relationships so that we can
formulate a complete sentence when we take the name of the first

Chapter 3. Analysts at Work 79

Defining Interactions and Relations

object as the sentence’s subject, the name of the relationship as the
predicate, and the name of the second object as the sentence’s object.
For example: The link between Buyer and Property is established by
the buyer’s preference, so we name the link “prefers” and read the link
as “Buyer prefers Property.” There are different forms of associations:
one-to-one, one-to-many, and many-to-many.

SaleTransaction

Agent

Buyer Preferences
A Seller

narme

bedroorms
hathroams

prefers

Fan

potential I

A4

DELR VY

A 4

has

characteriztics

Figure 31. Analysis Object Model of the Visual Realty Application

A special relationship between two classes is inheritance (see “Inherit-
ance” on page 8). We could have constructed subclasses of Property,
namely, Building and Plot, but we found that the agency does not dif-
ferentiate between these two kinds of real estate.

In Figure 31, you see six classes and ten associations. The relevant
classes are Buyer, Property, and Sale Transaction. The relevant associ-
ations are Buyer can buy Property; Buyer prefers Property; Property

80 VisualAge for C++ for 0S/2

Defining Contexts

attracts Buyer; Sale Transaction involves a Buyer, a Property, and an
Agent; Seller sells a Property; and Agent manages a portfolio of Prop-
erties, Buyers, and Sellers.

—— Attention

For the purpose of completeness, Figure 31 shows the Agent and Seller
objects and their links. As mentioned in the introduction, the application
does not manage the seller. In addition, the application depicts a fictitious
real estate agency where only one agent works. Therefore, the application
does not manage the agent information.

Defining Contexts

The time during which your story unfolds and where it takes place are
of great importance, as they influence the behavior of your characters.
For example, if your novel is set in some past era, your characters will
necessarily have to speak in a vocabulary that is noncontemporary. The
time and location of your novel will undoubtedly require that you do
some research and look in libraries for relevant documents. The benefit
of this bigger effort might be that you attract those readers who are
especially interested in learning something about life in other cultures
or epochs; you might think of Noah Gordon’s novel, The Medicus, a
medieval epoch that aroused his readers’ enthusiasm and their thirst
for a sequel.

Here it might be difficult to draw an analogy with OOA. However,
when we must analyze an existing application that we want to adopt
in our new system, is it not appropriate to research the past? The
existing software was developed in the past, so we must consult the
documentation (which sometimes exists) and look in the software
libraries for the underlying functions of the system. We can also ask
former developers how they planned the implementation and mainte-
nance of the system. As for the location of our application, we must
consider the hardware and software platforms and many other param-
eters that relate to the implementation.

OOA excludes reflections on the implementation environment, as we
want to achieve an analysis model that is independent of any con-
straints. Certainly, we must consider the feasibility of our project in
terms of the time frame and available financial resources. In addition,
we should know something about the user interfaces of the system.
Because we and our customers must clearly understand the analysis
model, it cannot contain descriptions that are too formal or drawings
that are too complex.

The primary goal of the analysis model is to use it to communicate

with our users, who are not necessarily acquainted with our software
terminology. Thus, we must name the objects and their attributes and

Chapter 3. Analysts at Work 81

Defining Contexts

82

functions with terms that our users understand. Therefore, we use the
same terms that appear in the problem statements, so that sometimes
the analysis model is also called the semantic model. Actually, it is a
symbolic representation of the formulated requirements specifica-
tions. We should be able to translate the analysis model into the speci-
fications without difficulty. On the one hand, the model represents the
requirements that have been completed and normalized; on the other
hand, it serves as a generalized description of the implementation.

As mentioned before, we develop the analysis model without regard to
the constraints that the implementation environment would impose
on the system. Thus, we can use the same model when we want to
implement our application on different platforms. That is why you
have not read much about VisualAge for C++ in this chapter. Before
we start implementing the application, we must further refine all of
the deliverables of the analysis phase to adapt them to the target plat-
form, which in our case is OS/2 Warp. We call this phase of refinement
object-oriented design (O0OD).

VisualAge for C++ for OS/2

‘Designers at Work

If you design something that even a fool can use, then only a fool will
use it.

- Murphy’s Law

The design phase of software development begins when we start
thinking about the implementation specifications. We cannot say
exactly when the analysis phase ends and the design phase begins,
but there is a difference between analysis and design (Figure 32 and
Table 5). The analysis model is a conceptual picture of what the sys-
tem provides, whereas the design model is an abstraction of how the
system is really built. During design, we take a closer look at the
details so that we can implement the final solution.

Object-oriented design (OOD) encompasses both system design and
object design activities. System design in a client/server environment
is a vast and complex topic. Fortunately, the Visual Realty application
is a stand-alone software system, although it can generate export files
for uploading and downloading data to or from a server.

In this chapter we present the approach we used to design our applica-
tion with VisualAge for C++. The approach is adapted from VMT.

83

84

Real World

Requirements

Analysis

Problem Domain

Real-world
Objects

Semantic Model

Computer World

Solution Domain

Interface Service
Objects Objects

Implementation Model

Application
Objects

Figure 32. From Analysis to Design

During system design, we decompose the analysis object model into
subsystems. The decomposition process is comparable to the process of
partitioning the whole application into subapplications. System design
also includes the task of choosing a platform and enabling technology
as the basis for deriving a high-level architecture. In this chapter, we
limit the system design to describing the subsystems of our applica-
tion. Our main focus is on object design with VisualAge for C++.

Table 5. Deliverables of Analysis and Design

Analysis Deliverable Design Deliverable

Use cases, external (user’s) view Use cases, internal (designer’s) view

User interface specifications and Design prototype

prototype

Object model Extension to the object model to
include interface and service classes

Class dictionary Extension to the class dictionary to
include interface and service classes

CRC cards More detailed CRC cards are more

detailed, and new CRC cards
describe the classes required for the

implementation
Event-trace diagrams (external Event-trace diagrams (internal
view) view)
State-transition diagrams (global State-transition diagrams (detailed
level) level; only for objects with relevant

state changes)

VisualAge for C++ for 0S/2

System Design

Legacy code is an issue when moving to the design phase, because we
must integrate it into our application. We must postpone all fine tun-
ing of overall system performance, because we tend to draw incorrect
conclusions if the implementation has not completed. Here the paral-
lel development of a design prototype can help measure run-time
behavior, so that we can change our database design as early as possi-
ble. The programming language might or might not support object-ori-
ented facilities such as inheritance and polymorphism. It is possible to
extend each programming language to an object-oriented language.
However, if this is a first project, the task is formidable, as coding
rules must be defined and functions that “simulate” object-orientation
must be implemented. In our case, however, we need not worry
because VisualAge for C++ provides those functions.

System Design

You have already sketched the thread of the plot, and now you define
further subplots that support the main flow of action. You structure the
overall action by partitioning it. Some authors partition their novels
into parts, they further divide the parts into chapters, and sometimes
they even subdivide the chapters into subchapters. Optionally, you can
assign a title to each chapter and part, so that readers can learn the
structure of the action by reading the chapter and part titles. You can
also regard a chapter as entirely self-contained, because the actions
taking place in it are so closely related that it can exist independently of
the book. Indeed, you can assign the writing of such chapters to another
author.

System design is the design of a high-level architecture for the pro-
posed solution. It includes a definition of the major system building
blocks and their high-level connectivity. It also includes an application
architecture that organizes the solution in subsystems.

Our main tasks during the system design stage are to:

Q Partition the object model into subsystems

Q0 Map subsystems to VisualAge for C++ subapplications
Q Select the implementing platform

Q Define data placement and data processing

Partition Object Model into Subsystems

We partition the system into two or more subsystems, mainly to
reduce complexity. You can compare a subsystem to a self-contained
chapter of your novel; we also want our subsystem to be self-con-
tained. We choose objects for a subsystem that are closely coupled by
relationships or that form a functional unit (for example, if one object

Chapter 4. Designers at Work 85

System Design

is a collaborator for a function of another object). We can read the
functional units from the CRC cards, and we can see the relationships
when we look at the object model. As a rule of thumb, we can assign
the use cases belonging to one actor to one subsystem. If one actor can
invoke several use cases, we then focus on the objects. If some of the
use cases use a certain group of objects, we build a subsystem includ-
ing that group of objects. The objects inside a subsystem are only
loosely related to objects outside the subsystem. If some single objects
cannot be grouped into any subsystem—objects that are responsible
for exception handling, for example—we treat each of them as a spe-
cial subsystem.

There is one difference when we compare a subsystem to a self-con-
tained chapter in your novel: Some subsystems are regarded as an
extension of the base system and are sold separately as service packs.
Your readers would be very unhappy if they had to pay extra for the last
chapter of your novel....

We can split the effort of system design by developing and implement-
ing subsystems simultaneously with more than one team. As the
objects in different subsystems are only loosely coupled, the message
flow between subsystems is much simpler than the message flow
within subsystems, and the teams can thus work rather indepen-
dently. We can further partition the subsystems into more low-level
subsystems.

We partition the Visual Realty application into three major sub-
systems:

Property: This subsystem provides agents with all of the
functions they need to manage their property
portfolios.

Buyer: This subsystem provides agents with all of the
functions they need to manage their buyer
portfolios.

Sale transaction: This subsystem provides agents with all of the
functions they need to manage the sale pro-
cess.

Map Subsystems to VisualAge for C++ Subapplications

86

With VisualAge for C++ we can make a relatively smooth transition
from subsystems to subapplications, as the application design tool of
VisualAge for C++, the Visual Builder, isolates subapplications in so-
called Visual Builder Binary (VBB) files.

VisualAge for C++ for 0S/2

System Design

We can consider the following VBB files:

0 VRPROPVBB contains the parts required for the property sub-
system.

0O VRBUY.VBB contains the parts required for the buyer subsystem.

0 VRSALE.VBB contains the parts required for the sale transaction
subsystem.

0 VRSERV.VBB contains the parts required to perform basic services
(upload and download data)

0O VRCOMM.VBB contains common parts (for example, logon view
and address view) that can be reused several times in the applica-
tion.

Select the Implementing Platform

The analysis model is the ideal model, but our computer world is not
ideal. The components of the actual implementation environment,
namely, the programming language, operating system, database man-
agement system (DBMS), networking system, and other software
packages, impose some constraints. The design model must include
these components, but the goal is to make our problem domain objects
as independent of the platform particulars as possible, particularly if
we intend to implement our product on different platforms. Rather, we
create new service objects that serve as an intermediate layer between
the functions of the actual platform and our business objects.

An example is database access: If a function of a business object
directly invokes an SQL query, we will have to change and recompile
the object when we (or the customer) bring in another DBMS. You
could justly retort that a new DBMS always involves a change,
whether it concerns the business object or the service object, so we
would have to expend the same amount of effort no matter which
object we change. We agree, for the current implementation. If we
think of reusability and maintenance, however, we prefer the solution
with the intermediate object, because then our core objects, which deal
with the business logic, are independent of the underlying DBMS. If
we are lucky and land a new customer who needs the same applica-
tion, we can stay cool and ask: “What would you like, DB2 or Poet?”
Even if the customer wants a brand-new, fuzzy-logic-oriented, PCM-
CIA-based, 128-bit DBMS, we will still deliver the same core objects.
(All we have to do is buy a bigger coffeemaker and create an incentive
for our programmers, who will have the dubious pleasure of imple-
menting the new service object.)

To make the application workable and manageable, we must select the

system platform or infrastructure. In our case, the implementing plat-
form is assumed to be a DB2/2 local area network (LAN) environment.

Chapter 4. Designers at Work 87

System Design

The enabling technology and component selections for our system
building blocks were predetermined by both the available supporting
platform for VisualAge for C++ when we wrote this book and the needs
of our application (Figure 33).

y Buyer A Property N y Sale Visual Realty
anagemen anageme anagement Business
Application
Common Data Access Application
Open Class
VisualAge for C++ for 0S/2 Libraries
Presentation Manager
LAN Workstation
UPM/2 LB2/2 Server MMPM/2 | | Operating
Environment
0S/2 Operating System

Figure 33. Visual Realty System Platform

The Visual Realty application is simple. It uses a stand-alone data-
base so that the agent can carry his or her laptop when visiting cus-
tomers. The agent can update the local database and generate export
files. Back at the agency, the agent can import the files to the central
database.

Define Data Placement and Data Processing

The initial decisions for data placement and data processing are made
during system design and can be reassessed during the object design
stage. These decisions would include whether the data should be
stored in a local or remote database.

Refine Contexts

88

You have already decided when and where your story takes place. Now
you must describe the context more distinctly, like a camera that zooms
in on a scene. You place your characters in a period setting or describe
the particulars of the landscape. Now is the time to consider how you

VisualAge for C++ for 0S/2

Object Design

want to embellish your novel. Do you want to describe a sunset, or per-
haps a rebellion of gnomes? Remember that the environment you
describe influences the personality, behavior, and speech of your char-
acters. All elements must fit together well so that your readers can
immerse themselves in your fictional world.

Object Design

The object design phase includes a refinement and a fleshing out of
the object details. Of course, the level of detail for the object descrip-
tions can vary.

Our main tasks during the object design phase are to:

0 Design the solution domain classes
Q Design the nonvisual parts

0 Design the GUI with the visual parts
Q Design the persistent data

Design the Solution Domain Classes

The set of classes that make up an application is usually much larger
than the set of classes identified during the analysis phase. As we con-
sider the circumstances of the implementation environment, we find
objects that we must include in our model. New objects emerge that
help implement the services or serve as an interface between the
application and the world outside the system, namely, the users or
connected devices. The initial set of semantic application classes iden-
tified in the analysis object model represents only the “core” business
behavior of the application. Other solution domain classes must be
designed to provide the concrete functions of the application. Interface
classes that represent the user interface and service classes that pro-
vide service functions such as data input validation or database access
are some examples of additional classes required for the implementa-
tion of the application.

We can compare the visibility of the analysis model with the top of an
iceberg, the main part of which is hidden under water. Our design
model reveals the hidden objects (Figure 34). To maintain traceability,
we translate every object into a part that we later implement, using
VisualAge for C++, in a separate source module. The solution domain
classes and services class are mapped to nonvisual parts, whereas
Interface classes are mapped to visual parts. The core is and should
remain the analysis model. The supporting objects are settled around
this core, providing the services that are necessary to embed the sys-
tem in the implementation environment.

Chapter 4. Designers at Work 89

Object Design

apparent connection

N

Figure 34. Design Model: Reveal Hidden Objects

The design of solution domain classes is iterative, as is everything else
in object-oriented development. For example, in the Visual Realty
application, we must have a service class to access the database and
control database access with a login procedure. This need does not
come out at the very first time of the design phase but after several
iterations. As you will see in Chapter 6, “Mapping Relational Tables
Using Data Access Builder,” on page 127, this service is provided by
the IDatastore part.

In the detailed design object model, objects are represented as non-
visual or visual parts to facilitate a straightforward implementation
that uses the Composition Editor of VisualAge for C++. To avoid com-
plexity, we do not draw all of the parts. However, we show them in the
different event-trace diagrams for the subsystem we describe.

Design the Nonvisual Parts

90

Once we have determined the required solution domain classes, we
are ready to flesh out their details and map them to nonvisual parts.
To help us in this task, we use the object model, the prototype inter-
face, and the event-trace diagrams for the use case scenarios for each
subsystem. The user interfaces enable us to flesh out some base
attributes or derived attributes. The event-trace diagrams detail the
message flow between the objects and reveal missing objects or miss-
ing methods.

VisualAge for C++ for 0S/2

Object Design

Let us take our CRC cards containing the class attributes and respon-
sibilities. We complete the cards by adding the data types of the
attributes, naming the functions that carry out the responsibilities,
and defining the number, sequence, and data types of the parameters
of those functions.

As you will see in Chapter 6, “Mcpping Relational Tables Using Data
Access Builder,” on page 127, the Visual Realty application is data-
centric. Thus, most of the nonvisual parts we use are mapped from
database tables. Nevertheless, when designing a nonvisual part, you
must pay attention to the following issues:

0 Choosing the right data structures to support object relationships.
VisualAge for C++ provides you with a set of predefined data
structures (see Chapter 2). The choice is dictated by semantic con-
siderations. For example, an association with multiplicity O or 1
between class A and class B is represented by an attribute in each
part interface referencing class A or class B. An association with
multiplicity 1-m between class A and class B is represented by an
attribute of type collection of class B in class A and by an attribute
of type class A in class B.

Q0 Designing derived attribute policies. Indeed, it is often useful to
make a distinction between primitive attributes that cannot be
derived from other attributes and derived attributes that can be
derived from other attributes (for example, price per square foot is
an attribute that can be derived from price and size).

QO Designing the data integrity policy. The programmer devotes a
great deal of time to building controls on user data. Two main
alternatives can be devised:

> Target objects expect that data is valid when passed to them
and the sender object is in charge of checking the data.
> Target objects verify data when they are asked to modify their
state.
As you will see in “Event Handler’ on page 220, we adopt the first
alternative, hooking event handlers to some entry fields at the view
level.

Design the GUI with the Visual Parts

During the analysis stage, we have defined the analysis object model
with only nonvisual parts. In the design and detailed design phases,
we must define the visual parts.

We recommend a bottom-up approach to achieve part reusability. You
start at the bottom of the class hierarchy and build one or more ele-
mentary visual parts for each nonvisual part that we have created.
(Visual parts are also referred to as views in this book.) You build the

Chapter 4. Designers at Work 91

Refining the Design Model

elementary visual parts by using primitive GUI controls (such as
entry fields, list boxes, and push buttons). Then you can aggregate
these views to build more complex views, which represent the final
assembly of the final end-user interface.

Design the Persistent Data

We use Data Access Builder to map our database tables to nonvisual
parts. Because our application is data-centric, our Data Access Builder
parts play the role of the business nonvisual parts. However, some
nonvisual parts, such as MarketingInfo, are built to hold some logic
that is relevant to the agency’s business rules. The relationships
between the parts are simulated by means of joins with primary and
foreign keys. For example, the address information of a property is not
located in the property table; it is located in a separate table. When
the property information is accessed, the address information is
retrieved at the same time and displayed in the property view.

In the next section, we select the Property subsystem and explain how
to refine its design model to come up with a detailed model that is
ready to be implemented by use of VisualAge for C++.

Refining the Design Model

92

You know exactly when and where your story takes place and you know
your characters. Now the time has come to make things happen. Rela-
tionships and encounters imbue your story with decisive impulses. You
have already defined the relationships in your outline and fact files,
but they are static. Now you must make them dynamic. Encounters,
meetings, appointments, dates, and coincidences, fictional or real,
enliven relationships and further develop the action. They increase the
tension, but you can also use them to slow down the main action and
let your readers take a few deep breaths.

One of the tasks that will challenge you the most is creating vivid and
clear dialog. As in real life, not all is said that is thought. Sometimes
you have to let your reader read between the lines.

Now the hard work starts for us: We must draw a detailed dynamic
model for all of our use cases, but now we must also consider all partic-
ipating objects and all objects that we may discover later. During the
analysis phase we described only those use cases that an actor directly
initiates, and we reflected only the business objects. Now we must also
consider those use cases that are created “under the covers” and
reflect the objects that are invisible to the user. We can see on the
event-trace diagrams how the objects interact with one another. Ini-
tially, actors create events (according to Jacobson, Object-Oriented

VisualAge for C++ for 0S/2

Refining the Design Model

Software Engineering. A Use Case Driven Approach by 1. Jacobson et
al. p. 147, they “send stimuli”) when they give any input. These events
are partially handled by the interface objects, as the actor should
receive an immediate feedback, but the interface object passes the
event to another object that is responsible for carrying out the actor’s
request. Events, in fact, are function calls to other objects, which in
turn should provide information or carry out a service. We must define
the names and parameters of every event with meaningful names to
facilitate maintenance and reuse.

Each use case has a normal course and several alternative courses
that handle exceptions. Sometimes we find abstract use cases that are
comparable to subprocedures. (An abstract use case is a sequence of
operations that can be reused in one or more “real” use cases.) When
we build a big application, several designers develop the dynamic
model simultaneously. Thus, we must homogenize the model (that is,
we must find the smallest number of methods, detect methods with
common behavior, and give them a unique name.)

After we have developed all event-trace diagrams for one object, we
can start implementing the object. The diagrams give a complete pic-
ture of the object’s interfaces. We also can draw each object’s state-
transition diagram to show which method has an impact on the
object’s state. As a rule of thumb, we can say that each object maps to
one class. If the object plays several roles, however, we should map it
to several classes. Object-oriented languages help us to seamlessly
translate the dynamic model into source code. As the translation can
be done in a straightforward manner, a code generator can be applied
here. Humans must still make the final refinements.

From the different views we have sketched in the user interface proto-
typing phase (see Figure 28 on page 71, for example), we can envision
the visual parts we need to implement all of the use cases. Further-
more, from the event-trace diagrams we can chain these different
views and discover some nonvisual parts that we need to complete the
process. For example, to search a property by its characteristics, users
access a primary window where they can choose the search option.
This option brings them to a secondary window where they select sev-
eral characteristics of “their” property. Then they launch the search.
The result is displayed by means of a table.

For our purposes, we consider the three main functions of the property
subsystem: property retrieving, property creation, and property
update.

As previously mentioned, refining the design object model is an itera-
tive process that involves the existing use cases, their corresponding
event-trace diagrams, and the design object model itself. On the basis
of the part available in the implementation tool and the detailed

Chapter 4. Designers at Work 93

Refining the Design Model

94

description of each use case, we evaluate the parts required to com-
plete our process. We apply this refinement process for each event-
trace diagram and then modify the design object model.

In the sections that follow, we illustrate the refinement process for the
property retrieving, property creation, and property update use cases.
We start from a first cut of the property subsystem object model
(Figure 35), which is based on the following assumptions:

Q The property information is divided into separate objects that are
stored in separate relational tables.

Q A Property object is represented on the screen as a notebook.

Q A distinctive object, PropertyManager, is required to manage a set
of properties. In effect, requirement specifications 5 and 6 (see
“Requirement Specifications” on page 64) imply the need for a
property set structure that must be managed somehow.

A A set of properties is shown to the user as a container control that
holds one or several container objects. A container object is a par-
ticular view of a Property object (the other view is the notebook
view).

I PropertyCnr l__.___ Property Property ! Property I

propertylist Fas description has
status

searchPropetties

has

PropertyContainerObject

Characteristics Marketinginfo Address PropertyActivityl og

area commissionRate street lastlpdate
depositRate region downloadTimeStamp

city
e zip

pedrooms
ns state

nor
bathroor
stories
cooling
heating

Figure 35. Design Object Model of the Property Subsystem: First Cut

The links between the different objects represent association relation-
ships. The has link expresses an association between two objects. For
example, the Property and Address objects are associated to express
that a Property has an Address. The link between PropertyManager
and Property indicates that a PropertyManager manages one-to-many
properties.

VisualAge for C++ for OS/2

Refining the Design Model

Refining the Property Retrieving Scenario

The use case corresponding to a property search is expressed as fol-
lows:

When the user selects the search option, he or she is prompted to
enter his or her criteria search, such as price range, size
range, area, number of bedrooms, number of bathrooms, number of
stories, type of cooling, and type of heating. Once the user
provides the information, the user activates the search. The
properties that match the criteria are displayed in tabular form.

In this use case scenario, we feel the need for some extra views to com-
plete the process. We can then refine the first event-trace diagram,
adding three views that help the user navigate through the applica-
tion:
QO PropertyManagementView is a primary window that enables
users to choose the search option.

O PropertySearchParameterView is a secondary window that
enables users to enter their search criteria.

2 PropertySearchResultView is a window that displays a table of
properties that match the users’ criteria.

At the detailed design stage, we must take into account the presenta-
tion characteristics of the target platform. In our case, the application
runs on a stand-alone system under OS/2. Taking advantage of the
PM controls, we use the detailed view representation of a container to
display the properties as a table.

When the user selects the search option from PropertyManagement-
View, a secondary window is created: PropertySearchParameterView
(Figure 36). This secondary window prompts the user to enter his or
her criteria. The criteria are sent as a clause to PropertySearchResult-
View. This clause is used by PropertyManager to extract the matching
properties. Then, PropertyManager refreshes the property container,
which is displayed by PropertySearchResultView. (Although not
shown on Figure 36, PropertyManager is embedded in Property-
SearchResultView to refresh the property container.) Thus, Property-
SearchParameterView and PropertySearchResultView are associated
by the clause. We can then refine the design object model by adding
these two classes, which are associated by a link attribute clause.

Chapter 4. Designers at Work 95

Refining the Design Model

96

Property PropertySearch PropertySearchResult ~ PropertyManager
ManagementView ParameterView View

\\

W\ search

create

request information

] [~ O\ information

I \ clause
Agent N\ search

N\ refresh

search OK

Figure 36. Event-Trace Diagram for the Property Search Use Case

Furthermore, PropertyManagementView is the first panel that is dis-
played to the user when he or she accesses the Property subsystem. It
is linked to PropertySearchParameterView by a use relationship
called create. The create relationship states that the user can access
the Search option from the PropertyManagementView. During the
user interface prototyping phase, it is decided that the user must close
the secondary window to access the primary window. (In PM it is said
that the secondary is shown modally.) For this reason, the relationship
clause is a one-to-one association.

Remember that in the first design stage we had to introduce the
PropertyManager class to manage a set of properties. The visual rep-
resentation of the class was a container control, and the representa-
tion of each property was a container object control.

In the second cut (Figure 37) we can aggregate the PropertyManager
and the PropertyCnr classes to the PropertySearchResultView.
PropertyManager and PropertyCnr are associated by the show rela-
tionship, which states that “PropertyCnr shows the contents of the
Property list managed by PropertyManager.” In addition, PropertyCnr
holds one-to-many PropertyContainerObjects, each of which is associ-
ated with a Property instance by the has link attribute.

VisualAge for C++ for OS/2

Refining the Design Model

Propertydanagementyiew

creates

PropertySearchParameterview

priceRange has
sizeRange 185
area

hedrooms
hathrooms
stories retrisves

cooling Property
heating

characteristics
search description
cancel

) clause

PropertySearchResultiew

propertyCnr
propertyManager

| shows I

PropertyCnr Propertyfanager has |

I has l has I has

has Address Marketinginfo Propertyiog MultiDoc

PropertyContainerObject

retrievePropertyLogy
retrieveharketinglnfo
rettievedultiDoc
retrievefddress

Figure 37. Design Object Model of the Property Subsystem: Second Cut

Refining the Property Creation Scenario

From PropertyManagementView, the agent can select the create
option to record a new property in the portfolio. To provide the agent
with a way of entering the property information, we must again define
one extra view, PropertyCreateView. According to the first design
object model of the property subsystem, this view presents the prop-
erty information as a notebook. To reuse this notebook in other scenar-
ios (see “Refining the Property Update Scenario” on page 101), we
decide to make this notebook a separate view: PropertyView. Thus,
PropertyCreateView contains PropertyView.

Chapter 4. Designers at Work 97

Refining the Design Model

98

The user enters the property information in PropertyView and creates
the property in the portfolio by selecting the create option of Property-
CreateView (Figure 38). The create order is sent to the Property part
in charge of creating a new instance. It is also dispatched to the other
nonvisual parts to create an instance of each respective part:

QO Address holds the location information.

O MarketingInfo holds the marketing information, such as the price
per square foot or agent commission.

Q PropertyLog holds two time stamps: one for the creation and one
for the last update. The time stamps are used during database
upload and download.

Q MultiDoc holds the path name and file name of the video file.

Property PropertyCreate Address Marketinglnfo PropertyLog MultiDoc Property
ManagementView View

invoke
creafe

create
—%

request chatacteristics info

\\| characteristfcs info
R) initialize
\ request add{ess info

\\] address info}

- initialize

request desgription info
description ipfo

initialize

request videp info

video info o
initialize

request marketing info

marketing info initialize

\\ push create putton
\ add

add

ladd(timestamp!

add
add

create OK

Figure 38. Event-Trace Diagram for the Property Creation Use Case

VisualAge for C++ for 0S/2

Refining the Design Model

For the third cut, we refine the design object model as follows
(Figure 39):

U PropertyCreateView is added and linked to PropertyManagement-
View by a creates relationship.

Q PropertyView is added and linked to the PropertyCreateView by a
containment relationship.

Q Each notebook page is added as a separate view and aggregated
with PropertyView to make up the notebook.

The PropertyView notebook consists of five pages:

1 Characteristics page displays the property characteristics (area,
size, price, bedrooms, bathrooms, stories, cooling and heating).

Q) Address page contains all of the location information about the
property.

U Description page describes the environment of the property.
0 Video page allows the user to watch a video of the property.
U Marketing page displays some marketing information (for exam-

ple, price per square foot, sale commission) correlated with one
another.

Chapter 4. Designers at Work 99

Refining the Design Model

Figure 39 shows the four components of Property: Address,
MarketingInfo, PropertyLog, and MultiDoc. Each component is associ-
ated with its corresponding page. The Characteristics page contains
the descriptive information contained by the Property object itself.
The user may ask for some adjustment in the user interface. For
example, one page is added for the description of the property,
although this attribute is part of the Property object. This is an imple-
mentation choice; it does not involve any changes to the model itself.

PropertyManagementView

J .
creates [creates

PropertySearchParameterView has

- PropertyCreateView e
priceRange P
sizeRange o
area E € I
bedroarms cancel
hathroarns Property\fiew
stories
caoling has has
heating ! I L
search T T l
cancel N i

CharacteristicsPage DescriptionPage
) clause
AddressPage VideoPage

PropertySearchResultView

propertyCnr retricvies

propertyhdanager etieves @ =

Property MarketingPage
0 characteristics
description
I shows I
i
PropertyCnr =4 PropertyManager has I T l has | has
e Address || | Marketinginfo | { Propertylog MultiDoc

PropertyContainerObject

retrieveFropertyLog
retrievebarketingnfo
retrievebultiDoc
refrieveAddress

Figure 39. Design Object Model of the Property Subsystem: Third Cut

100 VisualAge for C++ for 0S/2

Refining the Design Model

Refining the Property Update Scenario

A property search results in a set of matching properties that are dis-
played in a container. The users can update a property of their choice
by selecting the update option from the PropertyCnr pop-up menu.
Thus, from PropertySearchResultView, users must access an extra
view, PropertyUpdateView, which displays the property information
and enables them to update it if necessary. This view is based on the
PropertyView notebook, which we reuse (Figure 40).

3
2 2
2 £ 2 = %)
2) S 5] °
& 182 8z 1 2 < 2
£ 23] — DB o o |
20 23 >0 2= > @ 8 £ = -y
=N = 5 £ > = a = £ £
O G @ € D o 3 5} @ [a)] @ @ @
Qo C Q © Q - Q3 Q 5 = = aQ Q.
o i i S o 2] E]] o o
a = aa a = oo a < = = a a
S
| invoke
| search
create
request information
information
clause | search
refresh
Agent \
property option of pdp-up mepu
", Jupdate inf¢ (addresq, multidof, market. ghar.) send infg
. push update button
% update
update
update -
update (fime starmp)
update
update[OK

Figure 40. Event-Trace Diagram for the Property Update Use Case

Chapter 4. Designers at Work 101

Refining the Design Model

PropertyContainerObject is linked to PropertyUpdateView by the cre-
ates association. PropertyUpdateView holds PropertyView with the
has containment relationship (Figure 41).

PropertyfdanagementView
crestes I } creates PropertyUpdateView
PropertySearchParameterView update
PropertyCreateView cancel —
te | has
cel has Property\iew
cooling Hag ™
L fNas has 4
heating -
search 7
cancel

CharacteristicsPage DescriptionPage

) clause

AddressPage VideoPage

PropertySearchResultView
properyCnr refrigvas

propertyidanager | Property MarketingPage
"i:" [rlpt-n;- ’
l halel) J 1
PropertyCnr . PropertyManager | has I has has I has
‘ T Address | | Marketinginfo | | Propertyiog MultiDoc
PropertyContainerObject

f
MultiCoc
retrievefddress

Figure 41. Design Object Model of the Property Subsystem: Fourth Cut

Refining Roles

The fact file that you keep for each character who plays a major or
minor role in your novel describes his or her main traits rather superfi-
cially. Now, you must elaborate on those and add others to make the
character come alive. Your reader should almost hear your characters
breathing. You reveal what the characters think, describe their inner
monologs, and depict in detail how they react to certain situations.
Your readers eventually come to know a certain character as well as
another character in your novel knows him or her.

102 VisualAge for C++ for 0S/2

Refining the Design Model

At this stage, you may introduce new characters to illustrate something
about the background of your protagonist. Because some of these new
characters play a supporting role only, you might describe them shal-
lowly. Perhaps they appear on a few pages and are never mentioned
again. Other new characters may have a greater impact on the course
of the story, and therefore you describe them more thoroughly. For
example, if your novel is about a baseball trainer, you will describe how
he handles his team members, thus revealing his ability or inability to
do his job. Suppose that one of the team members has some personal
problems, which the trainer helps him resolve. The team member with
problems has a more important role in your novel than his comrades
have, so you describe his traits and experiences, but not those of the rest
of the team. In other words, you focus on characters who carry on the
plot.

Chapter 4. Designers at Work 103

Refining the Design Model

104 VisualAge for C++ for 0S/2

Part 3

ing the
| Realty
Application

By now you must be eager to see how to build the Visual Realty appli-
cation, so we give you the opportunity to do so in Part 3. Of course, we
do not fully detail the implementation of the entire application; rather,
we provide you with the keys to build it yourself.

To help you avoid some traps and pitfalls, we focus the development on
one subsystem, the Property subsystem, whose main functions are
creating, updating, deleting, and retrieving properties. All of those
functions take full advantage of the user interface and data access
parts that come with the IBM Open Class Library, shipped with
VisualAge for C++.

From the detailed design object model, each class is mapped to its cor-

responding part in Visual Builder: The views are mapped to visual
parts, and the business classes are mapped to nonvisual parts.

105

106

In the chapters that follow we show you how to build the subsystem in
five steps:

1.

You set up your development environment and configure the
Visual Realty application project, using WorkFrame/2.

. You map relational tables to nonvisual parts, using Data Access

Builder. Later, you use these parts with Visual Builder to enable
persistency in the application. We provide you with hints and tips
that help you design a good mapping and use the classes necessary
to interact with the database.

. You build the different visual parts that are required in the Prop-

erty subsystem, using Visual Builder. We show you how to build
simple visual parts by assembling primitive parts. (See “Using
Visual Builder” on page 27. The primitive parts are also called
controls.) Then we teach you how to reuse the simple parts to build
more complex composite parts. We provide you with some design
tips to improve the look and feel of your application and explain
how to use such complex controls as containers, notebooks, view-
ports, and multicell canvases.

Although most of the nonvisual parts are generated by Data
Access Builder and can be used as is, we show you how to design
your own nonvisual parts and take advantage of the notification
framework.

. Using specific connections, you assemble all of your parts. We jus-

tify the need for variables, explain the consequences of using the
promoting part feature, and demonstrate how to take advantage of
dynamic memory allocation by means of the factory part.

VisualAge for C++ for OS/2

Environment

In this chapter we present step-by-step instructions for creating and
configuring your development environment with WorkFrame/2 and
Project Smarts. You will use the WorkFrame/2 Build facility to create
the appropriate make files and build the application’s executable files
and libraries. WorkFrame/2 concepts are introduced in Chapter 2,
“Getting Started in a VisualAge for C++ Environment,” on page 19. If
you are not familiar with VisualAge for C++, you should read Chapter
2 first.

We assume that the VisualAge for C++ product as well as the Visual
Realty application are installed on your D: drive. For portability, all
file names have been built according to the file allocation table (FAT)
format. If you are running high-performance file system (HPFS) parti-
tions, you might want to change the file names to be more self-explan-
atory.

107

WorkFrame/2 Project Organization

Explanations given throughout this chapter assume that you have
some experience with the OS/2 environment. If you do not, use the
tutorial that accompanies the operating system.

—— Read this!

Throughout this chapter, we use the terms classes and

I L1 actions. We do not use them in the “traditional” sense of

5 classes from the object-oriented world or Visual Builder
actions. Rather, we use them in the special sense of Work-
Frame/2 class and action definitions.

To configure your development environment in the way
that is described in this chapter you must install the follow-
ing Corrective Service Diskettes (CSDs, see VisualAge for
C++ Support on page xxviii):

0 CTV303 or higher for the Visual builder
0 CTW301 or higher for the WorkFrame/2

In the design phase, we identified the different subsystems that make
up the Visual Realty application. If you apply the subsystem organiza-
tion of the application to the WorkFrame/2 environment, you can map
one subsystem to a project. In this chapter, we show you how to cus-
tomize the Property subsystem projects and subprojects.

The Property subsystem manages the creating, deleting, updating,
and retrieving properties in the Visual Realty application. Persistent
data of the Property subsystem is managed by DB2/2 and accessed
from Visual Builder through the parts generated by Data Access
Builder

WorkFrame/2 Project Organization

108

To organize the development environment for the Property subsystem,
you first have to identify the project elements, that is, the data files
that are required to build the subsystem. The Property subsystem
data files can be classified as follows:

Q Nonvisual and visual parts that are used to build the Property
subsystem; Visual Builder can generate those parts, or you can
create them

Q Nonvisual parts created by Data Access Builder that are reused by
Visual Builder to manage the Property subsystem persistent data

Q Visual Realty application common data, that is, the data that all
subsystems require, such as some dialog windows

QO Service subsystem data

VisualAge for C++ for 0S/2

File Organization

Once you have identified the project elements, you then have to iden-
tify the dependencies among those elements to determine the project
hierarchy. Clearly, the Visual Builder data depends on the Data Access
Builder data; you cannot compile the Visual Builder files if the Data
Access Builder files have not been generated. In such cases, you must
define the project Dacslib that manages the Data Access Builder parts
as a subproject of the project that manages the Visual Builder parts.
The Property subsystem also uses the Common and Service project
data, which implies that the Common and Service projects are to be
built first for the Property project to be completed.

Therefore, you must configure the Property project such that it
accesses the header files and libraries generated in the Dacslib, Com-
mon and Service projects.

You also have to create a main project that manages the application
main() entry point, the Property subproject and a Help subproject for
the application. The main project is called Visual Realty. Figure 42
depicts its project organization.

B4]:: Dacslib

I =] Property > Common

@ ke \::jj Service

Visual Realty

LS] Help

— Contains

Figure 42. Project Organization for the Visual Realty Application

File Organization

The project organization of the various subsystems does not necessar-
ily reflect the organization of the physical files managed by the Visual
Realty projects (see Figure 43). Do not forget that a single project can
manage several file locations. However, a project has a single working
directory, which is where it creates files.

Chapter 5. Setting Up the Development Environment 109

Creating and Customizing the DACSPRJ Project

We chose to develop our application on a single machine, but Work-
Frame/2 also handles files located on a LAN.

[oo

'L PROPERTY

DACSLIB

COMMON

SERVICE

HELP

Figure 43. Files Organization for the VisualRealty Application

In the sections that follow, we describe the steps to:

1. Create and customize a specific project—DACSPRJ—to create
libraries from the data generated by Data Access Builder

2. Create and customize the Help project

3. Create and customize the Common, Property, and Service projects,
as well as the Visual Realty main project with Project Smarts

4. Create and customize the DACS library (Dacslib) project for the
Property subsystem

Creating and Customizing the DACSPRJ Project

The DACSPRJ project is used to manage data created from Data Access
Builder. The strategy is to map the different DB2 tables used in a sub-
system such as Property to C++ classes and group all of those classes
in a single library. Thus, you create a specific project, DACSPRJ, which
defines the basic actions and types to generate the library. Then, you
use the DACSPRJ project as a base for the Dacslib project, which han-
dles the Data Access Builder Property subsystem data.

110 VisualAge for C++ for 0S/2

Creating and Customizing the DACSPRJ Project

The purpose of this step is not to reinvent the wheel but to reuse the
VisualAge for C++ default project. You simply make slight modifica-
tions to the default project to correctly build a Data Access Builder
DLL. In fact, when you use Data Access Builder, you are using both C
files (generated by the SQL precompiler) and C++ files (generated by
Data Access Builder itself). The default VisualAge for C++ project
defines a single action (Compile::C++ Compiler) for C and C++ files.
Because you have to specify different compilation flags for C and C++
files, you must create your own actions for compilation in the DAC-
SPRJ project.

The VisualAge for C++ default project is located on the D:\IBM-
CPP\MAINPRJ drive and is called VACPP. Modifications to VACPP will
affect any project you create from Project Smarts. Therefore, we rec-
ommend that you copy the VACPP project under a different name, such
as DACSPRJ, and modify the copy.

To copy the project, you can either:

O Open an OS/2 window, go to the D:\IBMCPPAMAINPRJ directory, type
copy VACPP DACSPRJ, and press Enter.

or

0 Double-click on the Drives folder, open the D:\IBMCPP\MAINPRJ
folder, select the VisualAge for C++ project, click on it with the
right mouse button, and select Copy. In the notebook that is now
opened, enter DACSPRJ in the New name entry field and click on
Copy.

——— Technical Information!

The VACPP project is used by default as the
base project for any project created from
Project Smarts or the VisualAge for C++
project template. Other tools, such as the class
browser, use the VACPP project settings. For
example, if you want to edit a class definition
from the Browser, you start the default editor
defined in the VACPP project. If you want to
change the default project in your system, you
modify the value of the IWFDEFAULT_PROJECT
environment variable (which was defined at
installation time in your CONFIG.SYS file).

Modify the DACSPRJ project as follows:

0 Add a CPPSource file type to handle C++ files only, that is, files
with the *.cpp extension.

1 Modify the existing CSource file type to handle C files, that is, files
with the *.c extension.

Chapter 5. Setting Up the Development Environment 111

Creating and Customizing the DACSPRJ Project

O Add a C Compiler action that takes CSource file types as input.

Q Modify the C++ Compiler action to take CPPSource file types as
input.

0 Change the default SQLPREP flags.

O Change the default flags for the C Compiler and C++ Compiler
actions.

0 Change the default linking flags.

QO Set the correct Build options.

Adding the CPPSource File Type

You have to create a new source type specific to the C++ Compiler
action. This type is called CPPSource and corresponds to files with the
.cpp extension. Here are the steps to add the CPPSource type to the
DACSPRYJ project tools setup:

1. Open the Drives folder, open the D:\IBMCPP\MAINPRJ folder, and
double-click on the DACSPRJ project to open it.

2. Open the DACSPRJ project tools setup, switch to the Types view,
and select Types—Add.

3. Enter the following data:

Class FileMask
Name CPPSource
Filter *.cpp

Tip!

If you want to reuse types, you can use the OS/2
drag-and-drop facility to copy a type from another
project’s tools setup to your tools setup. Make sure
that you have registered the classes that correspond
the types you are reusing.

Modifying the CSource File Type

In the VACPP project, the C++ Compiler action applies to the CSource
file type that groups files with the *.c and *.cpp file masks. You must
change the CSource file type to include *.c files only:

1. Open the DACSPRJ project tools setup and switch to the Types
view.

112 VisualAge for C++ for 0S/2

Creating and Customizing the DACSPRJ Project

9. Select the CSource type and click with the right mouse button to
bring up a contextual menu. Choose the Change item. Modify the
CSource type description as follows:

Class FileMask
Name CSource
Filter *.c

3. Click on Change to commit the changes.

Adding the C Compiler Action

To create the C Compiler action, open the DACSPRJ project tools
setup and switch to the Action view. Because the C Compiler action is
very similar to the C++ Compiler action, you create it from the C++
Compiler action definition. Select the C++ Compiler action in the com-
pile action class, click on it with the right mouse button, and select
Copy. Then, complete the fields as shown in Figure 44 and click on
Copy.

i Copy Action

. New name [C Compiler

| Target project _F_md |

D:AIBMCPPAMAINPRJADACSPRJ i

Figure 44. Change Action Dialog Window: C Compiler

Modifying the C++ Compiler Action

You have to modify the settings of the C++ Compiler action to replace
the CSource source type with the CPPSource file type. Here are the
steps to modify the C++ Compiler action in the DACSPRJ project:

1. Open the DACSPRJ project tools setup and switch to the Actions
view.

2. Select the C++ Compiler action in the Compile class and select
Actions—Change....

3. Switch to the Types notebook page and replace the original
CSource source type with the CPPSource type.

Chapter 5. Setting Up the Development Environment 113

Creating and Customizing the DACSPRJ Project

Changing SQL Precompile Action Flags

Because Data Access Builder uses static SQL, the SQLPREP action
must be configured to automatically generate bind files (.bnd files) as
well as the database packages. In other words, the /B and /P flags
must be turned on:

1. Open the DACSPRJ project tools setup and switch to the Action
view.

2. Select the SQL Precompile action from the Compile class and click
on it with the right mouse button to bring up a contextual menu.
Select File Options—Change from this menu.

3. In the SQLPREP option window, change the output option to Both
(/B /P).

4. Click on OK to commit the changes.

Changing Compilation and Linking Flags

114

The next step is to configure the DACSPRJ project so that the compi-
lation and linkage are correctly set to generate a DLL from the Data
Access Builder data.

Flags for C Compiler Action

Open the DACSPRJ project and choose Options—Compile—C Com-
piler from the Options menu bar item. In the C Compiler options dia-
log, you can graphically change most of the compiler options.
Set up the following options:

O Target type: DLL (on the Processing notebook page)

O Library selection: multithread (on the Object page)

O Library linkage: dynamic (on the Object page)

Flags for C++ Compiler Action

Open the DACSPRJ project and choose Options—Compile—C++ Com-
piler from the Options menu bar item. In the C++ Compiler options
dialog you can specify the following options:

0 Target type: DLL (on the Processing notebook page)
QO Library selection: multithread (on the Object page)
Q Library linkage: dynamic (on the Object page)

Select the Do not generate library info toggle button (on the
Object/Details notebook subpage).

VisualAge for C++ for 0S/2

Creating and Customizing the Visual Realty Projects

Flags for Link Action

As you have specified not to generate the default libraries information
for the C++ Compiler action, you must specify the list of libraries that
are required at link time. To specify the list of libraries:

1. Open the linking options by selecting Options—Link.

9. Switch to the File Names page and enter the following list of libs
in the Libraries to use entry field:

cppooc3i.lib cppoov3i.lib sql_dyn.lib cppods3i.lib
You also have to specify that the generated library is using templates:

Switch to the Templates page, choose the Templates used toggle but-
ton, and then choose Compile:C++ Compiler action as the associ-
ated action.

Setting the Build Facility Options

The Build facility creates a make file for the project and tries to build
the project from it. To correctly generate the make file, you have to set
up the list of actions that the MakeMake facility uses. To configure the
Build action, open the DACSPRJ project, select Options—Build—
Build Normal, and select the following actions:

O Compile::C Compiler

Q Compile::C++ Compiler
0 Compile::SQL Precompile
Q Link::Linker

Q Lib:Import Lib

Creating and Customizing the Visual Realty Projects

The DACSPRJ project is now ready for use. The next step 1s to create

the main project, Visual Realty, and the various subsystem projects.
Creating the Visual Realty Main and Subsystem Projects

The various projects for each subsystem are created from Project

Smarts and inherit from the default VisualAge for C++ project,

VACPP. To create the Property project:

1. Open the VisualAge for C++ folder.

2. Double-click on the Project Smarts icon.

Chapter 5. Setting Up the Development Environment 115

Creating and Customizing the Visual Realty Projects

116

3. Select Visual Builder application from the available project list.
4. Click on Create.

5. In the dialog window, enter the following data:

Project Property
Directory D:\VR\PROPERTY
Folder Desktop (or your local desktop name)

Repeat steps 3 and 4 to create the Common, Service, and Visual
Realty projects with the following data:

Project Directory Folder

Common D:\VR\COMMON Desktop

Service D:\VR\SERVICE Desktop

Visual Realty D:\VR Desktop
—— Attention

When you create a project with Project Smarts, such as a Visual Builder or a
IPF context-sensitive project, some sample files are created for you. You can
use those files as a startup point, or just delete them if they are not of any

use for your projects.

Project Smarts does not support the creation of composite project. You
therefore have to manually move the Service, Common, and Property
projects into their respective “parent” project. The Property project
has to be moved inside the Visual Realty project, while the Service and
Common projects must be moved inside the Property project. Do not
forget that projects are files and that defining project B as a subproject
of project A is equivalent to copying project B inside the project A
working directory.

To move the Service and Common projects inside the Property project:

1. Open the Property project

2. Select the Service and Common projects on your desktop (Ctrl +
left mouse button), drag and drop them in the client area of the
Property project.

You can also:

1. Select the Service and Common projects on your desktop (Ctrl +
left mouse button), click with the right mouse button on one of the
selected projects, and select Move. A notebook is now opened.

2. Switch to the Drives page and select D:\VR\PROPERTY.
3. Click on Move.

VisualAge for C++ for 0S/2

Creating and Customizing the Visual Realty Projects

If you now open the Visual Realty project, it should look similar to Fig-
ure 45.

Dacslib

@& Common e

°i (& Service -

Figure 45. The Visual Realty Project View

Creating the Help Project

The Help project is aimed at managing the context-sensitive help files
of the application. It is defined as a subproject of the Visual Realty
project. This project is also created from Project Smarts and inherits
from the default VisualAge for C++ project, VACPP. To create the Help
project:

1. Open the VisualAge for C++ folder.

2. Double-click on the Project Smarts icon.

3. Select IPF Context-Sensitive Help from the available project
list.

4. Click on Create.

5. In the dialog window, enter the following data:

Project Help
Directory DAVR\HELP
Folder Desktop (or your local desktop name)

Chapter 5. Setting Up the Development Environment 117

Creating and Customizing the Visual Realty Projects

Click on OK. A window pops up prompting you for some variables
names. You do not need to fill those variables in if you do not use the
default files generated for you by Project Smarts.

Once the Help project is on the desktop, you drag and drop it inside
the Visual Realty project. You can also:

1. Select the Help project on your desktop (left mouse button), click
with the right mouse button and select Move. A notebook is now
opened.

2. Switch to the Drives page and select D:\VR.
3. Click on Move.

Now you must change the settings of each project to change its target
name and make file name. For each project, open the project settings,
switch to the Target notebook page, and change the target name and
make file name as follows:

Project Target Name Make File
Property vrprop.dll vrprop.mak
Service vrserv.dll vrserv.mak
Common vrcomm.dll vrcomm.mak
Visual Realty vrmain.exe vrmain.mak

You are now ready to customize the Visual Realty projects.

Customizing the Visual Realty Main and Subsystem Projects

118

To correctly compile the Service, Property, and Visual Realty projects,
you must set the values of the LIB and INCLUDE environment vari-
ables for the compiler to find the correct header files and libraries. You
also can set various variables and flags to activate the trace facility in
the User Interface Class Library.

Modifying the LIB and INCLUDE Environment Variables

In the Visual Realty application, common parts are grouped in the
Common project. Both the Service and Property subsystems use those
common parts. You therefore must update the LIB and INCLUDE vari-
ables to include the path where common includes and libraries are

VisualAge for C++ for OS/2

Creating and Customizing the Visual Realty Projects

located for the Property and Service projects. The Property subsystem
also uses the Service and Property Dacslib subsysterns. The LIB and
INCLUDE variables must be completed accordingly.

—— Attention!

Ps 3

The new value of an environment variable is known only
within the scope of the project. If your make file requires the
newly defined INCLUDE variable to correctly build the appli-

cation, you must start the make action from the Work-

Frame/2 project. If you start the make action from an 0s/2
session window, the INCLUDE value is as defined in the 0s/2

CONFIG.SYS file.

To define the LIB and INCLUDE variables for the Property project:

1. Open the Property project tools setup, switch to the Variables
view, and select Variables—Add.

2. Enter the following information to add the LIB variable and click

on Add.
Name

String

LIB

DAVRACOMMON;D:\VR\SERVICE;D:\VR\DACS-

LIB;%LIB%

The %LIB% statement is equivalent to the current
value of the LIB variable, as defined in your CON-

FIG.SYS file.

Enter the following information to define the INCLUDE variable

and click on Add.
Name INCLUDE
String

DAVRACOMMON;D:\VR\SERVICE;D:\VR\DACS-
LIB;%INCLUDE%

Repeat steps 1 and 2 to define the LIB and INCLUDE variables for the
Visual Realty projects and define the HELP variable for the Help
project as follows:

Project Name

Variable Name

Variable String

Visual Realty LIB D:\VR\COMMON;D:\VR\SERVICE;D: \VR\PROP-
ERTY;D:\VR\DACSLIB;%LIB%

Visual Realty INCLUDE D:\VR\COMMON;D: \VR\SERVICE;D:\VR\PROP-
ERTY;D:\VR\DACSLIB;%INCLUDE%

Visual Realty HELP D:\VR\HELP ; %HELP%

Chapter 5. Setting Up the Development Environment

119

Creating and Customizing the Visual Realty Projects

120

Setting Up the Subsystem Projects to Generate a DLL

Each Visual Realty subsystem is compiled and linked to generate a
DLL. Therefore, you must change the compile and linking flags and
then create a module definition file (DEF) for each subsystem.

For each subsystem project (Common, Service, and Property), open
the project and choose Options—Compile. Switch to the Processing

notebook page and do the following:

1. In the Processing Step group box, select the Perform compile
only radio button.

2. In the Target group box, select the DLL radio button.

3. Click on OK to commit the changes.

Then, for each subsystem, use your favorite editor to create a .DEF file
according to the following template, where vrxxxx is respectively,
vrprop, vrserv, and vrcomm for each subproject:

LIBRARY vrxxxxx INITINSTANCE
DESCRIPTION ’vrxxxxx d11°

PROTMODE

DATA MULTIPLE NONSHARED LOADONCALL

EXPORTS

Setting Up the Linking Action Options

Select Options—Link, switch to the File Names notebook page, and
modify the data for each project as follows:

Project Name

Libraries to Use

Definition File Name

Common

082386.1ib

vrcomm.def

Service

052386.1ib

vrserv.def

Property

082386.11b
vrcomm.lib
vrdacs.lib
vrserv.lib

vrprop.def

Visual Realty

082386.1ib
vrcomm.lib
vrdacs.lib
vrserv.lib
vrprop.lib

(none)

Then, switch to the Templates page. Ensure that the Templates used
toggle button is checked and associated with the Compile::C++ Com-

piler action.

VisualAge for C++ for OS/2

Creating and Customizing the Visual Realty Projects

Setting Up the Build Facility Options

To correctly generate the make file, you have to set up the list of
actions that the MakeMake facility uses. To configure the Build action,
open each of the Service, Common, and Property projects, select
Options—Build—Build Normal, and select the following actions:

0 Compile::C++ Compiler

@ Link:Linker

0 Lib:Import Lib (except for the Visual Realty project, whose target
is an executable file, not a library).

For the Visual Realty project, select the following actions:
(0 Bind::Resource Bind
1 Compile::C++ Compiler
1 Compile::Resource Precompile
1 Compile::Resource Compiler
0 Link::Linker

Repeat these two steps for the Build—Rebuild All option.

Setting Up a Project for Trace Support

If you want to take advantage of the trace facility in the user interface
class library, follow these steps:

1. Compile your code with the IC_TRACE_DEVELOP preprocessor
macro. You can set this macro from the Build Smarts facility:

a. Open Build Smarts and select the Development toggle but-
ton

b. In the Define entry field, enter IC_TRACE_DEVELOP.

2. Set the ICLUI TRACE and ICLUI TRACETC environment variables
to enable the trace functions. The ICLUI TRACE variable enables
or disables the trace according to its value (ON/OFF), and the
ICLUI TRACETO variable enables you to redirect the trace output
to a file or a standard output. Redirect the output to STDOUT so
that you can see it from the project monitor window.

To set the ICLUI TRACE and ICLUI TRACETO variables you can either:
e Add the following statements to your CONFIG.SYS file:

SET ICLUI TRACE=ON
SET ICLUI TRACETO=STDOUT

or

Chapter 5. Setting Up the Development Environment 121

Creating and Customizing the Visual Realty Projects

122

* Add the variables in the project tools setup:

Open the project tools setup and switch to the Variables view.
Enter the following information to define the ICLUI TRACE
variable and click on Add:

Name

String

ICLUI TRACE
ON

Proceed in the same way to define the ICLUI TRACETO vari-

able:

Name

String

ICLUI TRACETO
STDOUT

Setting Up a Project for Visual Builder

After you have used Visual Builder for a while, you might find it
annoying to have to manually load the necessary VBB files for your
application. Do not despair, however. Visual Builder provides a facility
for automatically loading the correct VBBs when you start the tool. All
you have to do is create a VBLOAD.DAT file, using your favorite edi-
tor. A VBLOAD.DAT file is a flat file in which you list the VBB files
you want to load at startup. The VBLOAD.DAT file for the property
subsystem looks like this:

D:\IBMCPP\DDE4VB\VBDAX. VBB
D:\IBMCPP\DDE4VB\VBMM. VBB
D:\IBMCPP\DDE4VB\VBSAMPLE.VBB

O O O

:\VR\PROPERTY\VRPROP.VBB
:\VR\COMMON\VRCOMM. VBB
:\VR\SERVICE\VRSERV.VBB

You must specify the full path name for each VBB. Note that you do
not have to specify the VBBASE.VBB file because Visual Builder
always loads it at startup.

For each Visual Realty project, create a VBLOAD.DAT file as follows:

Project Name

VBLOAD.DAT File Contents

Service

D:\IBMCPP\DDE4VB\VBDAX. VBB
D:\IBMCPP\DDE4VB\VBSAMPLE.VBB
D:\VR\COMMON\VRCOMM. VBB
D:\VR\COMMON\KBDHDR . VBB
D:\VR\SERVICE\VRSERV.VBB

Common

D:\IBMCPP\DDE4VB\VBSAMPLE.VBB
D:\VR\COMMON\VRCOMM. VBB

VisualAge for C++ for OS/2

Creating and Customizing the Dacslib Project

Project Name VBLOAD.DAT File Contents

Visual Realty D:\IBMCPP\DDE4VB\VBDAX. VBB
D:\IBMCPP\DDE4VB\VBSAMPLE.VBB
D:\VR\COMMON\VRCOMM. VBB
D:\VR\SERVICE\VRSERV.VBB
D:\VR\SERVICE\VRPROP.VBB

D

:\VR\VRMAIN.VBB

Creating and Customizing the Dacslib Project

To create the DACS library (Dacslib) project for the Property project,
open the Templates folder and drop the WorkFrame 3.0 Project tem-
plate on your OS/2 desktop. Open the settings notebook for this new
project and provide the following:

1 Target page

> Tuarget: vrdacs.dll. Each project must have a single target,
such as an EXE or a DLL file.
> Make file: vrdaes.mak. The name of the file used by the
nmake tool to build the target.
Q1 Location page

> Source Directories for project files D:\VR\DACSLIB. If you
specify several source directories, you must indicate which
directory is the working directory. The working directory is
used to store any files created in the project.

0 Inheritance page

= Inherit from DACSPRJ. To specify from which project you
inherit, click on the Add push button and use the file dialog
window. If you have moved the DACSPRJ project to your desk-
top directory, the path which locates your project is C: \DESKTOP
(assuming OS/2 is installed on your C disk).

0 General page
Change the name of the project to Dacslib.

After you have provided the above information, move the Dacslib
project inside the Property subsystem:

1. Select the Dacslib project and click on it with the right mouse but-
ton to get a contextual menu.
2. Select Move.

3. Switch to the Drives notebook page and select D:\VR\PROP-
ERTY.

Chapter 5. Setting Up the Development Environment 123

Naming Conventions

4. Click on Move.

—— Technical Information!

If you inherit from multiple projects, you must
use the Promote and Demote functions to man-
age project precedence. The rule is that the lat-
est project in the inheritance list prevails over
all other projects if there is a conflict, for
example, if several projects define the same
action but with different options.

Setting Up the Linking Flags

You have to specify the name of the .DEF file used by the linker. Open
the link options dialog, and in the Definition File Name field, enter
vrdacs.def.

Click on OK to commit the changes.

Creating a Library Definition File

Once the code is generated from Data Access Builder, you have to
erase the various .DEF files and create a unique DEF file. Use your
favorite editor to create the VRDACS.DEF file in the D:\VR\DACSLIB
directory, with the following contents:

LIBRARY vrdacs INITINSTANCE
DESCRIPTION ’vrdacs d11°

PROTMODE

DATA MULTIPLE NONSHARED LOADONCALL
EXPORTS

For details on DEF files, refer to the C/C++ Programming Guide.

Naming Conventions

124

We used the following name conventions throughout the development
of the Visual Realty application (see Appendix D, “Class Dictionary,”
on page 353):

1. All file names are built according to the FAT format (eight letters
for the file name, three letters for the file extension).

2. All file names are built according to the VRSXXXXX format,
where:

VisualAge for C++ for OS/2

Run-time Considerations

e VR is an invariant for Visual Realty
e Sis the subsystem name

— B, for the Buyer subsystem

P, for the Property subsystem
— T, for the Sales Transaction subsystem

C, for the Common subsystem

S, for the Service subsystem
¢ XXXXX identifies the file contents.

Run-time Considerations

For the application to run, the necessary DLLs must be located in one
of the directories listed in the LIBPATH variable. We can therefore cre-
ate a D:\VR\DLL directory where all of the Visual Realty application
DLLs will be moved. This directory must be added to the LIBPATH vari-
able in the CONFIG.SYS file.

Chapter 5. Setting Up the Development Environment 125

Run-time Considerations

126 VisualAge for C++ for 0S/2

‘Relational Tables
Using Data Access
Builder

Data Access Builder lets you create object-oriented applications
quickly and reliably by generating the parts that you need to access
your relational tables. For each part, Data Access Builder generates
all of the required methods (add, update, delete, and retrieve) as well
as the embedded SQL code.

You can use the generated parts directly in your programs or import
them into Visual Builder. If you use Visual Builder to connect the
parts to other parts, you can quickly create applications that effi-
ciently access your databases.

127

Some of the key features of Data Access Builder are:

0 Table to parts mapping: You can create new parts, using your
existing database tables. You can create one part, or many parts,
from any table. Both C++ and SOM IDL code are supported.

0 Quick and custom mapping: The quick map feature lets you do a
column-to-attribute mapping. By using inheritance, you can cus-
tomize their classes to suit your needs.

O Visual display of mappings: Data Access Builder displays the map-
ping of your database tables to the object classes. This display sup-
ports visual editing.

0 Connection and transaction services: These services are provided
for connection and disconnection from your databases. In addition,
commit and rollback operations are provided to handle transaction
services.

0 DATABASE 2 OS/2 support: You can use DB2/2 in a stand-alone
environment or through the DB2 Client Application Enabler.

In the design object model (Figure 41 on page 102), property is
described by the following classes and their relationships:

Property Holds the general information of property:

Property registration identifier
Size

Number of stories

Number of bathrooms

Number of bedrooms

Cooling type

Heating type

Description

Address Holds the location information for the property:

Street
City
Area
State
Zip code

MarketingInfo Holds the marketing information for the property:
Price
Days on the market (elapsed time between the
last update and the creation date)
Commission rate (agent commission rate)
Down payment rate (buyer payment rate)

128 VisualAge for C++ for 0S/2

Mapping Tables to Parts

PropertyLog Holds the logging information:

Creation time stamp
Last update
Status (available, pending, or sold)

MultiDoc Holds the multimedia information for the prop-
erty:

Type (bitmap or video; only the video features
are implemented in the sample application)
File name

To store this property information, we define the following five tables
(see Appendix C, “Database Definition,” on page 347 for details):

0O PROPERTY

Q0 PROPERTY_ADDRESS
0 MARKETING_INFO
Q PROPERTY_LOG

0 MULTI_DOC

The relationships between Property and the other classes are repre-
sented by a foreign key in each table. In addition, we create two views:

Q PROP_AD_LOG is built by joining the PROPERTY,
PROPERTY_ADDRESS, MARKETING_INFO and PROPERTY_LOG
tables on PROPERTY ID and ADDRESS_ID. It is used to simulta-
neously display, in a container, the information from the four
tables (see “Using a Container” on page 182).

Q LIST_AREA is built by joining the PROPERTY_ADDRESS and
PROPERTY_LOG tables and contains, in alphabetic order, the dis-
tinct areas of properties that have the “available” status.

Mapping Tables to Parts

You can start Data Access Builder in three ways:

Q Click on the appropriate icon in the tools folder.
Q Start the product from an OS/2 session.
Q Start the product from WorkFrame/2.

With the first method, the source files are generated in the directory
that is specified in the notebook settings of the program. By default,
the files are produced in the D:\IBMCPP\WORKING directory (assuming
you have installed VisualAge for C++ on your D drive). If you want to
generate your code in the D:\REAL directory (assuming you have cre-
ated a \REAL directory to hold all files related to your application),
open the settings of Data Access Builder and set the working directory
to D:\REAL.

Chapter 6. Mapping Relational Tables Using Data Access Builder 129

Mapping Tables to Parts

130

With the second method, the code is generated in the directory from
which you start Data Access Builder. Therefore, if you want to gener-
ate your code in D:\REAL, simply change to the D:\REAL directory and
type the icsdata command to start Data Access Builder.

You use the third method to start Data Access Builder. In Chapter 5,
“Setting Up the Development Environment,” on page 107, you defined
a Dacslib project for the Property subsystem. From Dacslib you can
start Data Access Builder in four ways:

0 Select the Database option from the Project pull-down menu.

4 Select the Database option from the project’s pop-up menu.

Q@ Use the accelerator keys: Ctrl+Shift+A.

0 Double-click on a Data Access Builder session file (extension
.DAX).

Data Access Builder generates the files in the directory that you speci-
fied on the Location page of the Dacslib project settings notebook, that
is, D:\VR\DACSLIB.

Open the DACS library project and start Data Access Builder. The
startup window presents you with the following selections:

Create Classes To create new classes from relational tables

Open To open a Data Access Builder file and resume the
work of a saved session

Cancel To quit Data Access Builder

Help To access the online help

To create a mapping from scratch, click on the Create Classes... push
button. When you select Create Classes..., Data Access Builder
accesses your database directory and presents a list of all database

names cataloged on your machine (see Figure 46). From the list, you
can select the database with which you want to work.

VisualAge for C++ for OS/2

Mapping Tables to Parts

Databases

{USERID.ADDRESS . R— '
USERID.BUYER L. | Select All |
USERID.BUYER_LOG B

Tables

i

Figure 46. Data Access Builder Create Classes Window
Select the REAL database and click on Connect.

When you click on Connect, Data Access Builder tries to connect to the
selected database. If Database Manager is not already running, it is
started. If you are not logged on, you are asked to give the userid and
password of the database creator (in our case, the userid is USERID,
and the password is PASSWORD).

Once the database connection is established, Data Access Builder lists
the tables and views, prefixed with USERID (Figure 46). Click on each
table or view you want to map to a part. In our case, select only the
tables and views related to the Property subsystem:

USERID.LIST_AREA
USERID.MARKETING_INFO
USERID.MULTI_DOC
USERID.PROPERTY
USERID.PROPERTY_ADDRESS
USERID.PROPERTY_LOG
USERID.PROP_AD_LOG

ooo00oo

Then, click on Create classes to get to the main window, which shows
the mapping of each table on the free-form surface (Figure 47).

Chapter 6. Mapping Relational Tables Using Data Access Builder 131

Mapping Tables to Parts

132

USERID.PROPERTY_ADDRESS Proparty_address

-4

Property

Figure 47. Data Access Builder Main Window

To access the pop-up menu of each table, click on a table with the right
mouse button or, as a shortcut, double-click with the left mouse but-
ton.

Before you generate the code for each part, you can check the associ-
ated file names. For each part, the following files are generated:

* hpp, header for the parts

* cpp, code for the parts

*.sqc, embedded SQL to access the table

*.vbe, import file for Visual Builder

*.def, definition file for creating the DLL

*.mak, make file for building the DLL and LIB files

o000 0Oo

The make file produces a DLL and the import library required to
access the database. The DLL provides the code to access the rela-
tional tables. The import library is used during link-editing to resolve
the external references for the database access.

We strongly recommend that you use a file stem length of no more
than seven characters so that you can manipulate your source code
with either HPFS or the FAT file system. You can modify the file stem
with the following names:

Q ListAreV for LIST AREA

Q MarkInfV for MARKETING_INFO
Q MultidoV for MULTI_DOC

Q PropertV for PROPERTY

VisualAge for C++ for 0S/2

Mapping Tables to Parts

Q PropAddV for PROPERTY_ADDRESS
Q PropLogV for PROPERTY_LOG
Q PropALoV for PROP_AD_LOG

If you use Data Access Builder to generate one target for each table
mapping, make sure that the file names are unique for each target
generated. In our example, if you generate one DLL for each class, you
will avoid confusing Property, Property_address, and Property_log.
Each of them would generate a makefile that would produce the same
targets: PropertV.dll and PropertV.lib. In addition, the maximum
length for a database package is eight characters in DB2/2 1.2. Thus,
you should avoid file names with more than eight characters.

Notice that the C++ Target Library check box is not checked. Because
Data Access Builder is started from the WorkFrame/2 environment,
the target library should be set at the project level on the Target page
of the project settings notebook.

The Data identifier (Figure 48) is used to identify a row. Before the
update, delete, and retrieve operations, the unique values of the data
identifiers must be set to locate the row in the relational table. When
the Data identifier check box of an attribute is selected, that attribute
is used to identify a row in the table. By default, each primary key is
an identifier. If the table does not have a primary key, the first
attribute is selected as the default data identifier. You must ensure
that the attribute contains unique values. If the values in a data iden-
tifier identify more than one row, errors occur during the retrieve
operation, and multiple rows are affected during the update and
delete operations. Table 6 lists the identifiers for each relational table.

Chapter 6. Mapping Relational Tables Using Data Access Builder 133

Mapping Tables to Parts

Column Data ld | Attribute

HEATING . heating

SIZE ‘ size

STORIES stories

F= Attribute Name [property id

¥ Data Identifier

Figure 48. Data Access Builder Page Attribute of the Settings Notebook

Table 6. Relational Table Identifiers

Table Identifier
LIST_AREA AREA
MARKETING_INFO PROPERTY_ID
MULTI_DOC MULTIDOC_ID
PROPERTY PROPERTY_ID
PROPERTY_ADDRESS ADDRESS_ID
PROPERTY_LOG PROPERTY_ID
PROP_AD_LOG PROPERTY_ID

Select Generate on the pop-up menu of each part to generate the C++
code in the Dacslib project folder (Figure 49).

134 VisualAge for C++ for 0S/2

Parts Produced

== Data Access Builder
File View

|

|
USERID.PROPERTY_LOG Property_log r

L

|

USERID.PROPERTY_ADDRESS Proparty_address

| Open settings

w- Help

S——

. Delete
USERID.PROPERTY Pt Generate

| View source..

T i

Change the mapping information and view the methods

Figure 49. Pop-up Menu Generate Option

Notice that, after the source code has been generated for a part, an
orange jigsaw puzzle icon is added underneath the blue ball icon (Fig-
ure 49). Later, these icons remind you that the code has already been
generated. Close Data Access Builder and save the session under the
REAL.DAX file name.

You can now build the library and the corresponding DLL, using the
Build option from your project folder (Make sure DB2 is started before
building the application to prevent the SQL precompile action from
failing.) Notice that you can also generate the library from the Build
option of the Property project because the Dacslib Project is embedded
in the Property project.

Parts Produced

When you map a table, T, to a part, two parts are generated: the T part
and the TManager part, also called the manager part.

The T part is derived from the IPersistentObject class and represents
a row of the T table. Using the T part, you can access the information
of the table, because each column is mapped to a corresponding part
attribute (Data Access Builder handles type conversion between
DB2/2 and C++). Data Access Builder generates a method to get and
set the value of each attribute as well as check or set the attributes to
NULL (f allowed for that column). Those attributes are enabled for

Chapter 6. Mapping Relational Tables Using Data Access Builder 135

Using Data Access Builder Parts with Visual Builder

notification (see Chapter 10, “If You Want to Know More about Visual
Builder...,” on page 323) and return IString() representations. In this
way, attributes can be connected to other visual parts, with each
attribute reflecting the change to the other parts. In addition, the T
part supports the actions you usually apply on a table row: add, delete,
update, and retrieve.

These database access methods use static SQL for efficient access.
Before using these methods, you must indicate the attribute you will
use to retrieve the entire row (see Figure 48 on page 134 and Table 6
on page 134) and then check the Data identifier check box. You can
have several data identifiers.

The TManager part is derived from IPOManager and accesses multi-
ple rows of data. Using this part, you can retrieve several rows of the
table. Use the Refresh method to retrieve all rows of the table, and use

the Select method to retrieve a selected set of rows according to an
SQL clause.

The rows are maintained through an attribute of type IVSe-
quence<T*>* called iltems. As you will see in the section below, the
iltems attribute is used through attribute-to-attribute connections
with other visual parts, such as a container or a list box, to display the
contents of a set of rows.

In the current release of Data Access Builder, you must only use the
Select method of the manager part to limit the number of rows that
are read from a table and added to the IVSequence of the Manager
part.

All SQL access is executed through the exception handler framework.
In this way, exceptions are thrown by the parts whenever an error
occurs, and your application can catch the exceptions to react accord-

ingly.

Using Data Access Builder Parts with Visual Builder

136

For each mapping, Data Access Builder produces a Visual Builder
export file (VBE extension), which is used to import the parts defini-
tion in Visual Builder.

In the Visual Builder main window select Import part informa-
tion... from the File menu item to import all of your VBE files. For
each VBE file, a VBB file that consists of two parts is created. If you
want to reorganize your files, you can move parts from one VBB file to
another. For example, you may decide to move all Data Access Builder
parts related to the property subsystem in the VRPROPVBB file.

VisualAge for C++ for OS/2

Using Data Access Builder Parts with Visual Builder

To use the parts, you must establish a database connection. For this
purpose, Data Access Builder provides specific parts in the
VBDAX.VBB file. This file is located in the D: \IBMCPP\DDE4VB\ directory.
You must load it in Visual Builder to access its different parts:

Q0 IDSConnectCanvas—used as a general dialog to connect to a data-
base, [. This part can be reused to connect to a database in provid-
ing the following information (Figure 50):

Database name

Access mode (share or exclusive mode)
Userid

> Password

Y VY

IDatastore—a general-purpose part that gathers many of the ser-
vices you need to establish and manage and database connection,

The attributes of IDatastore are:

> isConnected, connection status (TRUE if connected, FALSE
otherwise)

dataStoreName, database name

shareModeExclusive, flag enabled for exclusive mode, flag
reset for share mode

> userName, userid for the connection

> authentication, password for the connection

YV

The events IDatastore can generate are:

> Connected, sent when the connection is established

> Disconnected, sent when the connection is terminated

> Transacted, sent when the connection is completed (rollback or
commit), false otherwise

The actions of IDatastore are:

> Connect, connect to the database

> Disconnect, disconnect from the database
> Commit, commit pending transaction

> Rollback, roll back pending transaction

Chapter 6. Mapping Relational Tables Using Data Access Builder 137

Using Data Access Builder Parts with Visual Builder

138

Database
Userld

Password

Datastore Datastore Messages

Figure 50. General Connection Dialog Canvas

Now that you are more familiar with Data Access Builder, let us build
a simple application (Figure 51). This time, you do not use the Work-
Frame/2 environment to organize your code. Instead, you start Data
Access Builder from an OS/2 session. To create a database connection,
follow these instructions (we assume that VBDAX.VBB is loaded and
the Data Access Builder parts created for the Dacslib project have been
imported in Visual Builder):

1. Open an OS/2 session.

2. Change to the D:\VR\DACSLIB directory, where the Data Access
Builder library for the Property subsystem has been generated.

3. Start Visual Builder from this directory by issuing the icsvb com-
mand. The Visual Builder window is displayed, and the working
directory is set to the current directory.

4. Create a new visual part with IFrameWindow as the base class:

e From the Visual Builder window, select Part — New... option.

VisualAge for C++ for OS/2

Using Data Access Builder Parts with Visual Builder

¢ Fill in the entry fields as follows:

Field Value

Class name TinyApp

Description Sample application with DACS
File name TINY

Part type visual part

Base class IFrameWindow

o Click on the Open push button. An IFrameWindow* part is
displayed on the free-form surface.

5. Add an IDatastore* part on the free-form surface, A (use Option —
Add parts... from the Composition Editor menu bar).

6. Open its settings notebook and set its attributes as follows (we
assume that a user, USERID, with a password, PASSWORD, can
connect to the REAL database):

Field Value
dataStoreName REAL
userid USERID

authentication PASSWORD

7. Connect the Ready event of the application to the Connect action
of IDatastore, fl. (The event is accessible from the free-form sur-
face pop-up menu.)

E IDatastore E PropertyManager

Figure 51. Simple Application with Data Access Builder

You can then use the database connection to interact with the rela-
tional tables. If you want to display the contents of the PROPERTY
table in a list box:

1. Add a PropertyManager® part on the free-form surface, B (use
Option — Add parts... from the Composition Editor menu bar).

Chapter 6. Mapping Relational Tables Using Data Access Builder 139

Using Data Access Builder Parts with Visual Builder

140

2.

From the Visual Builder palette, select an ICollectionViewList-
box* part in the Lists category and drop it on the IFrameWindow*
part. (An ICollectionViewListBox part is a general-purpose list box
that displays objects of any type in a collection.)

Open the settings notebook of the ICollectionViewListBox* part
and on the General page set the Item type to Property*, [§. The
items attribute maintained by the collection list box is set to the
IVSequence<Property*>* type and matches the type of the items
attribute held by PropertyManager (see the attribute-to-attribute
connection f in Figure 51 on page 139).

. Connect the Connected event of IDatastore to the Refresh

action of PropertyManager, f.

. Connect the ifems attribute of PropertyManager to the items

attribute of the list box, .

. Switch to the Class Editor and fill in the .LIB File Name entry

field with DACSLIB.LIB. A pragma statement is added to the class
header file generated by the Visual Builder to inform the linker to
link the application with the DACSLIB.LIB library.

. Save your part and generate its code:

¢ To generate the source code of the part, select the Save and
Generate — Part source option from the File pull-down menu
of the Visual Builder window.

e To generate the make file of your tiny application, select the
Save and Generate — main() for part option from the File pull-
down menu of the Visual Builder window.

VisualAge for C++ for OS/2

Using Data Access Builder Parts with Visual Builder

—— Hackers!

When you drop a part on the free-form surface by using
Options — Add Parts..., you cannot enter a part’s class name
without a trailing star (* for the dereferencing operator). If
you omit the star, you can only drop a variable of the part.
Also, if you drop a part from the palette, you may notice that
its type is a pointer to the part itself. In fact, you cannot drop
on the free-form surface a part that is not a pointer.

The relationship between a part and its subparts is an asso-
ciation of containment by reference; that is, the class of the
subpart is not embedded in the class of its composite part.
Rather, a pointer on the subpart is defined as an attribute of
the composite part. This subtle difference facilitates develop-
ment of the parts because you do not have to provide a copy
constructor (although we strongly recommend that you pro-
vide one for all of your parts (see item 11 of Effective C++
from Scott Meyers).

In fact, when you make connections between parts, you
define a class that contains methods requiring parts as
parameters (Initialize is one of them; see Chapter 9, “Con-
necting the Parts,” on page 227). By default, a parameter is
passed to a C or C++ function by value. Thus, the parameter
is copied into the stack before the call and restored when the
function terminates.

If you want to pass a part as a parameter, you must provide

the part with a copy constructor. If you do not provide a copy
constructor, you end up with compilation errors. To avoid this
problem, each part you drop on the free-form surface must be
a pointer whose base class holds a copy constructor!

You can now compile the code and run the application to see the con-
tents of the table displayed in the collection list box:

0O Switch to the OS/2 session window and make sure that D:\VR\DAC-
SLIB is your current directory. (The compiler must have the Prop-
erty.hpp file to compile and the linker must have the DACSLIB to
link-edit the tiny application.)

Q On the command line, enter: nmake tinyapp.mak.

0 Once the code has been compiled and linked, run the application
by typing tinyapp on the command line.

Chapter 6. Mapping Relational Tables Using Data Access Builder 141

Using Data Access Builder Parts with Visual Builder

All of the columns are displayed, separated by a period, in the list box.
In “Overriding the String Generator of the Collection List Box” on
page 191, we explain how to choose the contents of the list box.

—— Read this!

Each time your application uses the IDatastore part, you
must bind the DAXSCL.BND file to any databases that your
application accesses. This bind file allows IDatastore to
connect, disconnect, and complete transactions against the
database. To bind the file, enter the following command:

SQLBIND D:\IBMCPP\BND\DAXSCL.BND
database /G=PUBLIC

where database is the name of your database.

Now that we have mapped the tables to nonvisual parts, let us tackle
Visual Builder and begin to build the visual parts of the property sub-
system.

142 VisualAge for C++ for 0S/2

A visual part is a visual representation of the application objects you
defined during the design phase (see “Object Design” on page 89). The
set of visual parts you define makes up the user interface of the appli-
cation.

To get acquainted with the different views you are going to build, you

can run the Visual Realty application that is provided as a CD-ROM
with this book (see Figure 52).

143

144

Area

San Jos; Almaden

Property Buyers Sales Services

Property I
Size

Bedrooms

Bathrooms

Figure 52. Visual Realty Application in Action

You will find all of the information you need to install and run this
application in Appendix A, “Installing the Application,” on page 341.
You can also consult the READ.ME file on the CD-ROM for the latest
information.

—— Attention!

All of the visual parts that you build are prefixed with the letter A (for exam-
ple, PropertyView is built as the APropertyView part). With this naming con-
vention, the visual parts will be listed first in the Visual Builder window
visual part list box.

Also, in this chapter, view and composite visual part are synonyms.

To create visual parts, we strongly suggest that you begin from the
simplest parts and work up to the more complex parts. For example, to
build the visual parts of the Property subsystem, start from the sim-
plest view, AAddressView, and work up to the main view of the appli-
cation: ARealMainView. You can easily apply this building process by
following the view hierarchy structure, which depicts the use relation-
ship between the parts (see Figure 53). For example, according to the
hierarchy, AAddressView is built before APropertyView because
AAddressView is used by APropertyView, which in turn is used by
APropertyUpdateView, and so forth.

VisualAge for C++ for OS/2

ARealMainView

APropertyManagementView ALogonView ARealSettingsView
APropertyCreateView APropertySearchParameterView AUpLoadView

'

APropertySearchResultView

: —

APropertyUpdateView ADeleteDialogView

/

APropertyView

AAddressView

Figure 53. View Hierarchy

As is evident in the view hierarchy, use of the Property subsystem
requires that you build the following visual parts:

AAddressView displays an address. It is used in the Buyer and Prop-
erty subsystems.

APropertyView displays the property information.

APropertyCreateView displays the property information when a
new property is created.

APropertyUpdateView displays the property information when a
property is updated.

ADeleteDialogView displays a warning message before deleting
records from the database. It is reused by the Buyer,
the Property, and the Sale transaction subsystems.

APropertySearchResultView displays a list of properties that
match the buyer’s criteria.

APropertySearchParameterView displays and collects the
buyer’s criteria to select properties in the database.

AUpLoadView triggers the generation of the database export files.

Chapter 7. Creating Visual Parts 145

146

APropertyManagementView is the primary window of the Prop-
erty subsystem and provides access to the property
management options.

Al.ogonView collects the user’s authentication to establish a data-
base connection.

ARealSettingsView enables the user to update the application set-
tings.

ARealMainView is the main window application and enables the
user to log on to the database and to access the differ-
ent subsystems.

In the sections that follow, we describe how to use Visual Builder to
build the visual parts. We assume that you have some basic knowledge
of the tool (for a Visual Builder “crash course”, refer to “Using Visual
Builder” on page 27) and are familiar with the OS/2 environment. We
also assume that the following files are loaded in Visual Builder:

1 VBDAX.VBB, database access parts

0 VBMM.VBB, multimedia parts

U VBSAMPLE.VBB, general-purpose parts

' KBDHDR.VBB, general-purpose event handler for the keyboard

If you have installed VisualAge C++ on your D drive and you also have
installed the samples component, you will find the first three files in
the D:\IBMCPP\DDE4VB directory. The last file is provided on the CD-
ROM that accompanies this book. Refer to “Setting Up a Project for
Visual Builder” on page 122, where you will find instructions for build-
ing the VBLOAD.DAT file to load automatically these files in Visual
Builder when starting Visual Builder within each subproject.

Make sure that you read Chapter 5, “Setting Up the Development
Environment,” on page 107 to get acquainted with the WorkFrame/2
development environment, which serves as a base for organizing our
sample application. From each subproject (property, service, common,
and main) that you define, you can access the Visual Builder window
by selecting the Visual action from the Project pull-down menu or the
project pop-up menu. You can also use the accelerator keys
Ctrl+Shift+V.

When you construct your visual parts, you will have to configure some
parts, such as set canvas or multicell canvas, to enable them to evenly
display, when they resize, the controls they contain. These controls are
also called child windows. The settings for these canvases assume
that you use the default font for your controls: System Proportional -
10. Because our application has been developed on an SVGA resolu-

VisualAge for C++ for OS/2

AAddressView

tion machine (1024 x 768 pixels in 256 colors), your panels may not
look exactly the same if you run the application on a machine that has
a different resolution.

Also, when you add an entry control, such as an entry field or a list
box, to another part or the free-form surface, the number of characters
you can type for the control has a default value. When you change the
default, the control is not resized accordingly, except when it is
dropped on a multicell canvas. You can change the width of the entry
control to reflect its actual limit by selecting the Reset to default size
option in its pop-up menu. For example, suppose the entry field con-
trol you drop on the free-form surface has a default limit of 32 charac-
ters—this limit is kept in the limit attribute. When you change the
default to 10 characters, the width of the entry field control is not
updated accordingly. To resize the controls, select the control and click
on it with the right mouse button to display its pop-up menu. Then
select the Reset to default size option to adjust its width to 10 charac-
ters.

In the sections that follow, you build the visual parts of the Visual
Realty application by using entry controls that hold data. The data
width—the specific number of characters—is given by the correspond-
ing attribute of its relational table (see Appendix C, “Database Defini-
tion,” on page 347). Make sure that you reset the control’s size to the
default size after changing the limit of characters it can accept. As
mentioned above, this constraint does not apply when you drop a con-
trol in a multicell canvas. In this case, setting the limit of the control
automatically sets its width.

Finally, “adding a part” to the Composition Editor means selecting the
part from its palette category and dropping it on the free-form surface
or another part. The first time you have to add a part that you have
not used, we will give you its category name. This rule always applies
except when we tell you to use Option — Add part... from the menu
bar of the Visual Builder window.

It is now time to build your first visual part.

AAddressView

AAddressView represents the primary view for the Address class. It
consists of a multicell canvas—IMultiCellCanvas part is the name of
the part that you use in Visual Builder—on which you lay out several
entry fields—IEntryField part—to display the Street, Area, City, and
ZipCode attributes of the Address class and a combo box—IComboBox
part—to display its State attribute (see Figure 54).

Chapter 7. Creating Visual Parts 147

AAddressView

148

JStreet m -

Jf-\rea E

_ICitg @ |
“State E v
r'Zip Code E

Figure 54. AAddressView Part

Instead of using a standard ICanvas part, you build AAddressView as
a subclass of the IMultiCellCanvas part. This canvas enables the con-
trols that you drop onto it to expand or shrink when it is resized.

An IMultiCellCanvas part is a set of cells organized in rows and col-
umns. A multicell canvas is like a spreadsheet; each cell can contain a
part, and a part can span multiple rows and columns. The cells are
adjusted to vary the text length of the control. Multicell canvases
enhance NLS and facilitate the use of the application in different
graphical resolutions.

Each time you create a visual part that inherits from the IFrame-
Window part, the canvas of its client area is a standard canvas, ICan-
vas part. The controls you place in such a canvas cannot be resized
when the canvas expands or shrinks. However, multicell canvases
enable your controls to resize when changing fonts or screen resolu-
tion. Thus, we recommend that you replace the ICanvas part with an
IMultiCellCanvas part in all frame windows of the Visual Realty
application.

You can work with a multicell canvas in two ways:

O You can choose to use a multicell canvas to enable the controls
that you drop into it to resize when the user resizes the multicell
canvas. For this purpose, you can select the columns and the rows
that you want to be expandable in your multicell canvas. Each
control that you drop in one of these rows or columns can then
grow or shrink according to the dimension of the multicell canvas.
For example, suppose you have an entry field that contains the
fully qualified name of a file. Let us say that this entry field can
accept a name that is 45 characters long. You can add this entry
field in a multicell canvas column that you can set to be expand-
able, and you can set the limit attribute of the entry field to 45.
Then, you can resize the length of the entry field to your liking—
this size is known as the minimum size of your control. The multi-
cell canvas memorizes this size as the limit below which the con-
trol is clipped if the user continues to shrink the multicell canvas.

VisualAge for C++ for 0S/2

AAddressView

(That is why a multicell canvas is also known as a minimum size
canvas.) When users want to type a long file name, they can
stretch the canvas so that the entry field stretches accordingly.
You will use this facility in “Building the Video Page” on page 166.

O You can choose to use a multicell canvas to enable your application
to be portable across different screen resolutions or font settings.
In this case, the multicell canvas does all the work for you. All you
do is drop your controls on the multicell canvas. Each time you
change the font type or the label of those controls, they are resized
according to the minimum size the control returns to the multicell
canvas.

To adjust the size of a parent window to the size of its canvas in any
type of resolution, the parent window must execute a moveSizeTo-
Client action before displaying. This action requires, as a parameter,
an IRectangle object that describes the position and the minimum size
of the client. The action can be executed by triggering a custom logic
connection (see “Using Custom Logic” on page 249) from the ready
event of the free-form surface to the parent window:

target — moveSizeToClient (IRectangle(target — position(),
target — client()
— minimumSize()));

If you use a multicell canvas as the client canvas, you can adjust the
size of the multicell canvas to the size of the parent window by setting
its outermost columns and rows to be expandable. This is the method
you will use in this book (see, for example, “ADeleteDialogView” on
page 178).

— Attention!

When you resize a control by using its handles—the han-
dles are the four small black boxes that appear on the
corners of the control when you select it—make sure that
you do not set the minimum size to a fixed value. If a
fixed minimum size is set for the control and the control
is used in combination with a minimum size canvas, it
will not resize properly when the screen resolution is
changed because its minimum size is not calculated at
execution time. To ensure that the minimum size is calcu-
lated at execution time, open the control’s settings note-
book and, on the Size/Position page, select the Calculate
at execution time radio button. This precaution is not
necessary if you do not use the control in a minimum size
canvas.

In a multicell canvas, the width of a given column is the width of the
largest control in that column. Likewise, the height of a row is the
height of the highest control in that row. Thus, you may encounter
some trouble if, for example, you are seeking to drop two controls with

Chapter 7. Creating Visual Parts 149

AAddressView

a different width in the same column. The smaller control will adjust
to the width of the larger. You can prevent the smaller control from
resizing in two ways:

0 Add another column in your multicell canvas and make the long-
est control span two columns. Use the ALT key to drag your con-
trol over multiple columns or rows. Then set the second column to
be expandable. In this way, the control expands across the second
column, and the shortest control is not resized. The problem with
this approach is that you make the first control expandable even
though expansion might not be needed. The second approach
resolves this issue.

0 Use another canvas in the multicell canvas and drop the shortest
control on it. The constraint here is that you must use a minimum
size canvas that manages the minimum size attribute of its con-
trols. You can use the set canvas, the toolbar canvas, and the
multicell canvas as the minimum size canvas. Whichever canvas
you use, ensure that the visual part that you build will support
different screen resolutions and font settings. Use an ISetCanvas
part to add the zip code entry field in AAddressView. The ISet-
Canvas part is a set of cells organized in rows and columns called
decks. It can be used to provide adjustable cells in rows or columns
within canvases.

A final word of advice: When you use a multicell canvas, do not place
controls in the first and last rows and in the first and last columns.
Reserve them for the left and right and top and bottom margins. You
can set the columns and rows to be expandable so that the controls in
the multicell canvas remain centered when it is resized.

To build AAddressView, follow the step-by-step instructions in Table 7.

Table 7. (Part 1 of 3) Constructing AAddressView Part

Step | Action

1 Start Visual Builder from the Common project (select Project —
Visual in the menu bar).

2 From the Visual Builder window, select Part — New... option.

3 Fill in the entry fields as follows:

Field Value

Class name AAddressView

Description General-purpose address view
File name VRCOMM

Part type visual part

Base class IMultiCellCanvas

Click on the Open push button. An IMultiCellCanvas* part is dis-
played on the free-form surface.

150 VisualAge for C++ for 0S/2

AAddressView

Table 7. (Part 2 of 3) Constructing AAddressView Part

Step

Action

4

Open the settings notebook of the IMultiCellCanvas* part and con-
figure it as follows:

0 Number of rows: 11

0 Number of columns: 5

0O Expandable rows: 1, 11
0 Expandable columns: 1, 5

Close the settings notebook.

Select the Sticky check box, [], below the palette. When the Sticky
check box is selected, the mouse pointer remains loaded with the
last part that has been dropped on the free-form surface. This is a
convenient way of dropping several parts of the same type without
moving the mouse pointer back and forth from the palette to the
free-form surface.

Add five IStaticText* parts to the IMultiCellCanvas* part, as shown
in Figure 54 on page 148, and name then appropriately. Change
their text attributes as follows: Street, Area, City, State, and Zip
Code. (The IStaticText* part is located in the Data entry category.)
Notice that, with the Sticky check box selected, the IStaticText*
part remains loaded in the mouse pointer after it has been dropped.
Because you are going to add four entry fields, keep the Sticky
check box selected.

Add four IEntryField* parts (), [, [, [to cells (2, 4), (4, 4), (6, 4),
and (10, 4) of the IMultiCellCanvas* part. (The IEntryField* part is
located in the Data entry category.)

Open the settings notebook of each IEntryField* part and set the
names and limits as follows:

Part Name Limit
A EntryFieldStreet 20
B EntryFieldArea 20
C EntryFieldCity 20
D EntryFieldZipCode 10

Close the settings notebooks. Refer to Appendix C, “Database Defi-
nition,” on page 347 for the structure of the PROPERTY_ADDRESS
table. When you add a part to another part or to the free-form sur-
face, Visual Builder automatically assigns a name to the part. It is
good practice to rename the parts to more meaningful names if you
want to refer to them from other parts. You change the part’s name
from its settings or its pop-up menu.

In step 10, you are going to add only one IComboBox* part in the
IMultiCellCanvas* part. Thus, you can deselect the Sticky check
box now.

Chapter 7. Creating Visual Parts 151

AAddressView

Table 7. (Part 3 of 3) Constructing AAddressView Part

Step | Action

10 Add an IComboBox* part to cell (8, 4) of the IMultiCellCanvas®*
part. (The IComboBox* part is located in the Lists category.)

11 Open the settings notebook of the IComboBox* part, [set its type
to Read-only drop-down and its name and limit as follows:

Part Name Limit

E ComboStateBox 20

Close the settings notebook. Refer to Appendix C, “Database Defini-
tion,” on page 347 for the structure of the PROPERTY ADDRESS
table.

12 Add an ISetCanvas* part to cell (10, 4) of the IMultiCellCanvas*
part. This canvas will hold the entry field for the zip code. (The ISet-
Canvas™ part is located in the Composers category.)

13 Open the settings notebook of the ISetCanvas* part and, on the
General page, set the width and height of the margin to 0. Then
close the settings notebook.

14 Select the IMultiCellCanvas* part and from its pop-up menu select
the Reset to default size option to adjust its size to the controls it
holds.

Note: Reverse highlighted letters are keyed to Figure 54 on page 148.

You can improve your visual part so that the user can use the key-
board to move the input focus from one subpart to another.

Tabbing from One Part to Another

From a part’s pop-up menu you can select the Tabbing and Depth
Order option to control the order in which the user tabs between its
subparts.

When you select the Taubbing and Depth Order option of a part, the
tabbing order list of the part is displayed. From this list you can:

0 Change the position of parts to reflect their order in the Composi-
tion Editor. In effect, the order in which parts are placed on a can-
vas part determines their tabbing order. You probably need to
change the order of the list as you add or rearrange parts. You
move one line of the list by dragging and dropping it to the loca-
tion of your choice.

152 VisualAge for C++ for 0S/2

AAddressView

0 Set groups and tab stops. To enable the user to move the input
focus to a part by using the Tab and Backspace keys, select the
Tab stop check box to the left of the part you want to be tabbed. If
you want the user to be able to move the input focus to a part with
the keyboard arrow keys, you must define a group of parts by
selecting the Group check box to the left of the first part in the
group—this part is called the group part. In the Tabbing and
Depth Order dialog box, each part under the group part is in the
group; the user can select each part by using the arrow key. To
start another group, select the Group check box for the part you
want to be the first part in that group. If you select both the
Group and Tab stop check boxes for a part, the user can tab to
the first part in the group and then use arrow keys to move to
other parts in the group. The user moves from one group to
another, using Tab and Shift Tab keys. In a group, the user
moves from one part to another, using the keyboard arrow keys.

Q0 Perform operations on parts as you do in the Composition Editor.
You can access the pop-up menu of a part from the order list. You
will find this operation useful when you want to access a part that
you cannot see in the Composition Editor.

To enable the user to move from one input control to another by using
the keyboard keys, modify the AAddressView part as follows:

1. Select the IMultiCellCanvas* part.

2. Select the Tabbing and Depth Order option from its pop-up menu.

3. If necessary, reorder the entry fields and the combo box to match
their order in the view (you can drag and drop a line in the list).

4. Select the Group check box of EntryFieldStreet to define a group.

5. Select the Tab stop check boxes for all entry fields and the combo
box as shown in Figure 55.

6. Close the window.

Chapter 7. Creating Visual Parts 153

AAddressView

Grbup '

Tab stop
“““““““ ;*t‘l;ﬂtviéeliCan‘\;;s
.} staticTextStreet ‘

E Wj 1 StaticTextArea ‘ !
C1il . staticTextCity ;
ol StaticTexiState !
Ll StaticTextZipCode
Vv EntryFieldStreet
v EntryFieldArea ‘ §
W EntryFieldCity § |
T ComboBoxState |
| “ SetCanvasl 1

Figure 55. Tabbing Order for AAddressView

AAddressView is reused by APropertyView to display the address of a
property. Therefore, APropertyView must have access to the contents
of each entry field of AAddressView and to the contents of its combo
box.

Promoting a Part Feature

154

Promoting a part feature is a way of exposing the feature to another
part. When a feature is promoted in part A, it can be accessed from
anothe - part, B, when part A is embedded as a subpart within part B.
Thus, to use AAddressView as a subpart and access the contents of its
entry fields and its combo box in another part, you must promote the
text attribute of these controls.

When you define a part in Visual Builder, the new features you add to
the part are not available from other parts unless you promote them.
You can promote the feature of a part in two ways:

QO Select the part and use the Promote part feature... option from the
part’s pop-up menu.

Q Use the Promote page in the Class Editor.

VisualAge for C++ for OS/2

AAddressView

Let us promote the text attribute of EntryFieldStreet:

1. Select EntryFieldStreet ([} in Figure 54 on page 148) and click on it
with the right mouse button.

2. Select the Promote part feature ... option.

3. Promote the text attribute (Figure 56).

pp tedRange anyEvent
electedText _icharacterTypeEven
electedTextLength ‘
hadowColor

{inputEnabledEvent
ostFocusEvent

Figure 56. Promote EntryFieldStreetText Attribute of AAddressView

Now that you have promoted your first feature, you must promote the
text attribute of the other controls: ComboBoxState, EntryFieldArea,
EntryFieldCity, and EntryFieldZipCode.

When you have promoted all features, switch to the Class Editor and
fill in the Code generation file group box as follows:

Q C++ header file (hpp): vreadrv.hpp

Q C++ code file (.cpp): vrcadrv.cpp

Save your part. At this time it is not necessary to generate the code
because the connections have not been drawn.

Chapter 7. Creating Visual Parts 155

APropertyView

APropertyView

156

APropertyView is the view of the Property class. In the design object
model of the Property subsystem (Figure 41 on page 102), the Prop-
erty class is represented as an association of four different classes:

Q Address

Q MarketingInfo
Q PropertyLog
Q MultiDoc

To reflect this association, you design the view of Property as a note-
book whose pages represent the respective view of each class compo-
nent (see Figure 57).

Note that the PropertyLog class is not represented as a notebook page
because it does not have any visual representation. It is used to hold
the time stamp of each creation or update in the database. In addition,
a Description page is added to display information that is related to
the Property class but does not fit on the Property page.

ize

ddress

o
=

i i
ﬁ'JPropertg ID m

S
Bedrooms ||

Description

Bathrooms

AHEER

Stories

L
=
=3 Heating

i
Cooling

Figure 57. APropertyView Part

In the sections that follow, you build APropertyView by using a note-
book part and then enhance it with the multicell canvas and the view-
port parts.

—— Reminder

You must promote all field attributes of the APropertyView part because the
part is reused in APropertyCreateView and APropertyUpdateView, and
these attributes must be accessible.

VisualAge for C++ for 0S/2

APropertyView

Using a Notebook Control

The INotebook* part is a software representation of a physical note-
book. It presents information on tabbed pages that the user can dis-
play sequentially or randomly. For an example of a notebook control,
open any Visual Builder settings editor.

When building a notebook, you can use its various settings to tailor its
appearance. You can:

Q Select the type of binding (spiral or solid).
Q Define the tab appearance, tab size, and tab text alignment.
Q Define the page button size.

Once you have tailored the appearance of the notebook, you can add
pages by selecting an add page choice from its pop-up menu. If the
notebook does not have any pages, your only choice is to add a first
page with the Add Initial Page option. If the notebook has one or more
pages, select a page and choose Add Page After or Add Page Before.
When a notebook is added to the Composition Editor, it already has
one page (Figure 58).

Figure 58. Notebook for APropertyView

To build APropertyView as a notebook, follow the step-by-step instruc-
tions in Table 8.

Table 8. (Part 1 of 2) Building APropertyView As a Notebook

Step | Action

1 Start Visual Builder from the Property project (select Project —
Visual in the menu bar).

2 From the Visual Builder window, select Part — New... option.

Chapter 7. Creating Visual Parts 157

APropertyView

Table 8. (Part 2 of 2) Building APropertyView As a Notebook

Step | Action

3 Fill in the entry fields as follows:

Field Value

Class name APropertyView
Description Property primary view
File name VRPROP

Part type visual part

Base class INotebook

Click on the Open push button. An INoteBook* part is displayed on
the free-form surface with one initial page.

4 Open the settings notebook of the INotebook* part and set its
appearance as follows:

Setting Value
Binding Spiral
Tab shape Square
Status area Left
Tab Center

Close the settings notebook.

5 Add four more pages, using the Add Page After option.

Building the Pages of a Noteboook

You can construct a notebook page by using one of two methods:

O Assemble controls on a separate canvas and drop the canvas on
the page client area. Use this method if the visual part for the
notebook page is reusable. For example, you built the AAddress-
View part (Figure 54 on page 148) as a reusable part and can drop
it on the Address page (Figure 61 on page 164). It is good practice
to build your notebook page on a separate canvas, especially when
the pages are complex. Furthermore, you can encapsulate non-
visual parts at the page level.

Q Assemble controls directly on the notebook page. Use this method
if the visual part for the notebook page is not reusable or the page
is simple enough to be built directly in the notebook. Because the
Marketing, Characteristics, Video, and Description pages of our
Visual Realty application are fairly simple, you build them directly
in the notebook (Figure 64 on page 169).

Although you build the Marketing, Characteristics, Video, and

Description pages as nonreusable canvases, you should always design
your parts as reusable. In actuality, you might not reuse a specific part

158 VisualAge for C++ for 0S/2

APropertyView

in your application, but you never know when you will need the part
in another application. Building for reuse implies building for other
applications.

Enhancing the Notebook Page

When you add a page to a notebook, the page is created with an ICan-
vas* part as a client area. On this canvas, you can add several parts to
enhance your page. As you know, the standard canvas is suitable for
most situations, but it does not allow the controls to be evenly distrib-
uted when it resizes. Thus, to enhance the notebook, you use a multi-
cell canvas for all pages.

The multicell canvas is not a panacea for all resizing problems, how-
ever. In effect, every canvas, whatever its type, has a fixed minimum
size that corresponds to the size of the canvas in the Composition Edi-
tor. Thus, the use of a multicell canvas for a notebook page does not
prevent the user from getting clipping effects when the notebook is
downsized.

In order for the user to scroll the page to access information when the
page is clipped, you must use a viewport in the notebook page. The
IViewPort part belongs to the Composers category. It is a scrollable
framework for any type of canvas (Figure 59). The user interacts with
the controls placed inside the viewport and can scroll both horizontally
and vertically if the control does not fit in the frame window.

I_lPropertg ID

al5
0

Size

T

R

%

Bedrooms 0

J
Bathrooms 1

PR

—l . 7
Stories 1k

0
3| Heating
N

~ooling

Figure 59. Characteristics Page Using a Viewport

In the Visual Realty application, you use an IViewPort part for each
notebook page. In addition, you must attach a specific handler, IVB-
MinSizeViewPortHandler, to each viewport. This handler ensures that
when a viewport grows in size, its child part will grow with it. In our

Chapter 7. Creating Visual Parts 159

APropertyView

case, the child part is a multicell canvas that “knows” how to enlarge
proportionally. Without the handler, the multicell canvas would not
enlarge to fit the dimensions of the viewport.

Figure 60.

& IBH view port to sc
L

Handter Hame

[Add after] add before! Move..| Remove

AR Lobsmand RE

Event Handler List Box

Tip!

To select a page in a notebook, click in between the
two horizontal lines at the bottom of a page. The two
lines provide you with visual help to locate the page
within the notebook. They are not shown at run time.

Building the Characteristics Page

The characteristics page is built from basic controls such as entry
fields, combo boxes, and numeric spin buttons. It serves as a good
example of the use of different controls for different needs. You build
this part in the same way you built AAddressView. This time, you use
the ISetCanvas part for each control that you drop on the multicell
canvas because the width of the control differs.

160

VisualAge for C++ for OS/2

APropertyView

To build the characteristics page, follow the step-by-step instructions
in Table 9.

Table 9. (Part 1 of 3) Building the Characteristics Page

Step | Action

1 Select the first notebook page and change its tab label to Charac-
teristics.

2 Open the settings notebook of the INotebook™ part and set the tab
parameters as follows:

Setting Value

Major tab width 130

Major tab height 30

Close the settings notebook.

The tab length is adjusted to fit the largest label of the notebook.
Usually you choose the tab length after you have entered its labels.
Use the Apply push button of the settings notebook to adjust the
length of the tabs.

3 Click inside the page to select the canvas and remove it.

4 Add an IViewPort* part to the page. (The IViewPort* part is located
in the Composers category.)

5 Open the settings notebook of the IViewPort* part and, on the Han-
dlers page, add the IVBMinSizeViewPortHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

6 Add an IMultiCellCanvas™ part in the IViewPort* part. (IMultiCell-
Canvas* part is located in the Composers category.) Configure the
IMultiCellCanvas part as follows:

QO Number of rows: 15

QO Number of columns: 5

O Expandable rows: 1, 15
Q Expandable columns: 1, 5

7 Add seven IStaticText* parts to the IMultiCellCanvas™ part as
shown in Figure 57 on page 156 and change their text attributes as
follows: Property ID, Size, Bedrooms, Bathrooms, Stories, Heating,
and Cooling.

8 Add seven ISetCanvas* parts in cells (2, 4), (4, 4), (6, 4), (8, 4), (10,

4), (12, 4), and (14, 4) of the IMultiCellCanvas® part.

Chapter 7. Creating Visual Parts 161

APropertyView

Table 9. (Part 2 of 3) Building the Characteristics Page

Step

Action

9

Add two IEntryField* parts ([, [}) to the ISetCanvas* parts in cells
(2, 4) and (4, 4) of the IMultiCellCanvas* and set their names and
limits as follows:

Part Name Limit
A EntryFieldPropertylD 5
B EntryFieldSize 5

10

Add three INumericSpinButtons* parts ([§,],) to the ISetCanvas*
parts located in cells (6, 4), (8, 4), and (10, 4) (the INumericSpin-
Button™ part is located in the Data entry category) and set them up
follows:

Part Name Limit Lower UpperValue
C NumericSpinButtonBedrooms 1 0 6 0
D NumericSpinButtonBathrooms 1 1 4 1
E NumericSpinButtonStories 1 1 3 1

A property with no bedrooms is a studio.

11

Add two IComboBox* parts ([j and [§) to the ISetCanvas* parts in
cells (12, 4) and (14, 4) and set their names and limits as follows:

Part Name Limit
F ComboBoxHeating 20
G ComboBoxCooling 20

12

Open the settings notebook of ComboBoxHeating and set its con-
tents as follows:

No Heating

Gas Electric
Propane Gas
Bottled Gas
Solar

Oil Central
Forced Air Wall
Furnace Floor
Furnace Radiant
Baseboard
Steam or Hot Water
Heat Pump
Other

Select Read-only drop-down in the Combo box type group box.
Close the settings notebook.

ooo0pO0o00o00000

162

VisualAge for C++ for OS/2

APropertyView

Table 9. (Part 3 of 3) Building the Characteristics Page

Step | Action

13 Open the settings notebook of ComboBoxCooling and set its con-
tents as follows:

Q No Cooling

O Central Conditioner
3 Room Conditioner
2 Evaporative Cooler
1 Other

Select Read-only drop-down in the Combo box type group box.
Close the settings notebook.

14 Select the IMultiCellCanvas® part and open the Tabbing and Depth
Order dialog box. Set the tabbing groups as follows (see “Tabbing
from One Part to Another” on page 152):

b Feature

EntryFieldPropertyID
EntryFieldSize
NumericSpinButtonBedrooms
NumericSpinButtonBathrooms
NumericSpinButtonStories
ComboBoxHeating
ComboBoxCooling

Group T
X

o

DA A KK

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 57 on page 156.

Building the Address Page

To build the address page, reuse AAddressView as shown in Figure 61.

Chapter 7. Creating Visual Parts 163

APropertyView

& Street

Area

City

State o \;

Marketing

Zip Code

Figure 61. Address Page

Follow the step-by-step instructions in Table 10.

Table 10. Building the Address Page

Step | Action

1 Select the second notebook page and change its tab label to
Address.

2 Click inside the page to select the canvas and remove it.

3 Add an IViewPort* part to the page.

4 Open the settings notebook of the IViewPort* part and, on the Han-
dlers page, add the IVBMinSizeViewPortHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

5 Add an AAddressView™ part in the IViewPort* part (Option — Add
parts... from the Composition Editor menu), [} The AAddressView*
part is added to the page. Notice that you cannot access its sub-
parts.

Note: The reverse highlighted letter is keyed to Figure 61.

Building the Description Page

The description page (Figure 62) consists of three controls: a viewport,
a multicell canvas, and a multiple-line edit (MLE) control. The MLE
control provides users with a basic word processor that enables them
to briefly describe the property.

164 VisualAge for C++ for 0S/2

APropertyView

Figure 62. Description Page

To build the description page, follow the step-by-step instructions in
Table 11.

Table 11. Building the Description Page

Step

Action

1

Select the third notebook page and change its tab label to Descrip-
tion.

Click on the page to select the canvas and remove it.

Add an IViewPort* part to the page.

Open the settings notebook of the IViewPort* part and, on the Han-
dlers page, add the IVBMinSizeViewPortHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

Add an IMultiCellCanvas* part to the IViewPort* part. Stretch the
part to fill in the page and configure it as follows:

Q Number of rows: 3

Q Number of columns: 3
Q Expandable rows: 2.

Q Expandable columns: 2

The MLE control will grow when the page is resized.

Add an IMultiLineEdit* part to the IMultiCellCanvas™* part
(IMultiLineEdit* part is located in the Data entry category) and
change its name to MultiLineEditDescription, [J. Stretch the part to
fill in the page.

Note: The reverse highlighted letter is keyed to Figure 62.

Chapter 7. Creating Visual Parts 165

APropertyView

166

Building the Video Page

The video page (Figure 63) enables the buyer to watch a video of the
property. The page is built from a visual representation of a VCR com-
mand control: the IMMPlayerPanel part. For this part to be added to
the Composition Editor, the VBMM.VBB file must be loaded in Visual
Builder (File — Load from the Visual Builder window).

i I
”"‘2.;‘ Video

“FileName

S S e e e e e e

e
K

Figure 63. Video Page

This time, you build the part by using several multicell canvases, each
of which is in charge of handling the resizing of a specific portion of
the page. On the Video page, the file name entry field and the canvas
where the video is displayed are expandable. A group box is used to
logically group the video controls and the entry field.

To build the video page, follow the step-by-step instructions in
Table 12.

Table 12. (Part 1 of 3) Building the Video Page

Step | Action

1 Select the fourth notebook page and change its tab label to Video.

2 Click inside the page to select the canvas and remove it.

3 Add an IViewPort* part to the page.

VisualAge for C++ for 0S/2

APropertyView

Table 12. (Part 2 of 3) Building the Video Page

Step

Action

4

Open the settings notebook of the IViewPort* part and, on the Han-
dlers page, add the IVBMinSizeViewPortHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

Add an IMultiCellCanvas™* part to the IViewPort* part. Stretch the
part to fill in the page and configure it as follows:

3 Number of rows: 11

0 Number of columns: 9

O Expandable rows: 1, 10, 11
Q Expandable columns: 1, 5,9

Use Figure 64 on page 169 to position the controls in the IMultiCell-
Canvas™ part. Notice that row 10 and column 5 are set to expand-
able so that the entry field and the multicell canvas used for the
video canvas can expand.

Add one IStaticText* part to cell (4, 3) of the IMultiCellCanvas*
part and change its text attribute to Filename.

Add one IEntryField* part to cell (4, 5) of the IMultiCellCanvas*
part and set its name to EntryFieldVideo and its limit to 40, [J.

Open the settings of EntryFieldVideo and, on the Styles page, set
the readOnly radio button to On to prevent the user from entering a
file name in the entry field. To set the contents of the entry field, the
user must use the Find... push button.

Add an ISetCanvas* part, [J, to cell (6, 3) of the IMultiCellCanvas*
part. This canvas will contain two push buttons.

10

Open the settings notebook of the ISetCanvas* part and, on the
General page, set the deck orientation to Vertical and the margin
width to 0. The push buttons dropped onto the canvas will line up
vertically.

11

Add an IMultiCellCanvas* part, [§, to cell (6, 5) of the first IMulti-
CellCanvas* part and configure it as follows:

0 Number of rows: 3

QO Number of columns: 3

Q Expandable rows: 1, 3

Q Expandable columns: 1, 3

This canvas will contain the IMMPlayerPanel part and will ensure
that the panel remains centered underneath the entry field when
the page is resized.

Chapter 7. Creating Visual Parts 167

APropertyView

168

Table 12. (Part 3 of 3) Building the Video Page

Step

Action

12

Add an IMultiCellCanvas* part, [I}, to cell (10, 5) of the first IMulti-
CellCanvas* part and configure it as follows:

Q Number of rows: 3

2 Number of columns: 3
Q Expandable rows: 2

O Expandable columns: 2

This canvas will contain the canvas for the video and will grow
when the page is resized.

13

Add an ICanvas* part to cell (2, 2) of the IMultiCellCanvas* part, [i}
(ICanvas* part is located in the Composers category.) The video is
displayed inside.

14

Add two TPushButton* parts to the ISetCanvas* part, [}, and
change their labels as shown in Figure 63. (The [PushButton* part
is located in the Buttons category.)

15

Open the settings notebook of the Load push button and set its
name to PushButtonLoad. Close the settings notebook.

16

Open the settings notebook of the Find... push button and set its
name to PushButtonFind. Then switch to the Styles page and set
the defaultButton radio button to On. Close the settings notebook.

17

Add one IMMPlayerPanel* part, E, to the cell (2, 2) of the IMulti-
CellCanvas* part (Option — Add part... from the Composition Edi-
tor menu).

18

Add an IGroupBox* part on the first IMultiCellCanvas™® part and
change its name to Video. (The IGroupBox™ part is located in the
Data entry category.) Extend the group box from cell (2, 2) to cell (7,
6) to span the IEntryField* and IMMPlayPanel* parts. (Use the
ALT key to extend the group box beyond the multicell canvas cell
boundaries.)

19

Select the first IMultiCellCanvas* part and open the Tabbing and
Depth Order dialog box. Define two tabbing groups as follows (see
“Tabbing from One Part to Another” on page 152):

Group Tab Feature

X X EntryFieldVideo

X X PushButtonLoad
X PushButtonFind

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 63 on page 166.

VisualAge for C++ for OS/2

APropertyView

Building the Marketing Page

The marketing page (Figure 64) displays the marketing information
about the property. It is built from basic controls such as entry fields
and static text controls. The static text controls [J, B, [, and [}] are
updated by the nonvisual part, AMarketingInfo, which computes their
value according to the contents of entry fields [3, [§ and [8.

.
Price

E

Characteristics

|
Price/Sqft

[Not available
)

e —

)
Days on Market

Not available

O
- Commission .
Rate F
J
Amount Not available

T
—-Down Payment
é | Rate

3
Amount

Figure 64. Marketing Page

To build the marketing page, follow the step-by-step instructions in

Table 13.

Table 13. (Part 1 of 3) Building the Marketing Page

Step | Action

1 Select the last notebook page and change its tab label to Market-
ing.

2 Click on the page to select the canvas and remove it.

3 Add an IViewPort* part to the page.

4 Open the settings notebook of the IViewPort* part and, on the Han-
dlers page, add the IVBMinSizeViewPortHandler handler to the
handler list (Figure 60 on page 160). Close the notebook settings.

Chapter 7. Creating Visual Parts

169

APropertyView

170

Table 13. (Part 2 of 3) Building the Marketing Page

Step | Action

5 Add an IMultiCellCanvas* part to the IViewPort* part. Stretch the

part to fill in the page and configure it as follows:

U Number of rows: 22

0 Number of columns: 7

0 Expandable rows: 1, 22

4 Expandable columns: 1, 7
Use Figure 64 on page 169 to position the controls in the IMultiCell-
Canvas* part.

6 Add seven IStaticText* parts to the second column of the IMultiCell-
Canvas®* as shown in Figure 64 on page 169 and set their text
attributes as follows:

O Price

Q Price/Sqft

4 Days on Market
O Rate

4 Amount

0 Rate

Q Amount

7 Add four more IStaticText* parts (), [, [, [to cells (5, 5), (7, 5), (13,
5), and (20, 5) of the IMultiCellCanvas™* part and set their part
names as follows:

Part Name

A StaticTextPriceSqft

B StaticTextDaysOnMarket

C StaticTextCommssionValue

D StaticTextDownPaymentValue

8 Change the text attribute of IStaticText* parts [, [J, [}, and [} to Not
Available and their respective limit to 7, 3, 7, and 7. Their contents
will be calculated later by the nonvisual part, AMarketingInfo (see
“AMarketingInfo” on page 214).

9 Add three IEntryField* parts (E, E @') to cells (3, 5), (11, 5), and (18,
5) of the IMultiCellCanvas* part and set their part names and lim-
its as follows:

Part Name Limit
E EntryFieldPrice 7
F EntryFieldCommissionRateSize 5
G EntryFieldDownPaymentRate 5
10 | Add two IGroupBox* parts to group the commission rate and

amount and the down payment rate and amount. The commission
group box extends from cell (9, 2) to cell (14, 6), and the down pay-
ment group box extends from cell (16, 2) to cell (21, 6).

VisualAge for C++ for OS/2

APropertyView

Table 13. (Part 3 of 3) Building the Marketing Page

Step | Action

11 | Select the first IMultiCellCanvas* part and open the Tabbing and
Depth Order dialog box. Define two tabbing groups as follows (see
“Tabbing from One Part to Another” on page 152):

Group Tab Feature
X X EntryFieldPrice
X X EntryFieldCommissionRate
X EntryFieldDownPaymentRate

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 64 on page 169.

To reuse APropertyView in other parts, you must promote some of its
features. Switch to the Part Interface Editor and select the Promote
page. Promote the features listed in Table 14.

Table 14. (Part 1 of 2) Promoted Features of APropertyView
Promote Feature Name Subpart Name Feature | Promoted
Type Feature
addressViewComboBoxState- AddressView attribute | ComboBoxState-
Text Text
addressViewEntryFieldAreaText | AddressView attribute | EntryFieldArea-
Text
addressViewEntryFieldCityText | AddressView attribute | EntryFieldCity-
Text
addressViewEntryFieldStreet- AddressView attribute | EntryFieldStreet-
Text Text
addressViewEntryFieldZipCode- | AddressView attribute | EntryFieldZip-
Text CodeText
commissionRate EntryFieldCommission- attribute | valueAsDouble
Rate
daysOnMarket StaticTextDaysOnMarket attribute | text
downPaymentRate EntryFieldDownPayment- | attribute | valueAsDouble
Rate
price EntryFieldPrice attribute | valueAsDouble
bathrooms NumericSpinButton- attribute | value
Bathrooms

Chapter 7. Creating Visual Parts 171

APropertyCreateView

Table 14. (Part 2 of 2) Promoted Features of APropertyView
Promote Feature Name Subpart Name Feature | Promoted
Type Feature

bedrooms NumericSpinButtonBed- attribute | value
rooms

size EntryFieldSize attribute | valueAsDouble

propertylD EntryFieldPropertylD attribute | text

cooling ComboBoxCooling attribute | text

heating ComboBoxHeating attribute | text

videoFileName EntryFieldVideo attribute | text

Note: Notice that the numeric attributes are promoted as valueAsDouble.

Now you can save APropertyView. First, switch to the Class Interface
Editor and fill in the Code generation file group box as follows:

0 C++ header file Chpp): vepprpv.hpp
0 C++ code file (.cpp): vrpprpv.cpp

Then save the part.

APropertyCreateView

172

APropertyCreateView (Figure 65) is a composite part that consists of
APropertyView and three push buttons:

O Create, for creating a new property in the database
Q Cancel, for canceling the operation and closing the window
Q Help, for accessing on-line help

The base class of this part is an IFrameWindow part. You tailor this
main window, adding an info area, IInfoArea part, to its frame and
changing the standard canvas to a multicell canvas. The info area is
used to display help information related to some parts of the view. We
explain the use of the info area with the fly-over help facility in “Add-
ing Fly-over Help to a Control” on page 247.

The three push buttons are added to a set canvas.

VisualAge for C++ for OS/2

APropertyCreateView

Figure 65. APropertyCreateView

To build APropertyCreateView, follow the step-by-step instructions in
Table 15.

Table 15. (Part 1 of 3) Constructing APropertyCreateView Part

Step | Action

1 Start Visual Builder from the Property project (select Project —
Visual in the menu bar).

2 From the Visual Builder window, select Part — New... option.

3 Fill in the entry fields as follows:

Field Value

Class name APropertyCreateView

Description View to create a property in the database
File name VRPROP

Part type visual part

Base class IFrameWindow

Click on the Open push button. An IFrameWindow* part is dis-
played on the free-form surface.

4 Change the IFrameWindow™ part title to New Property.

5 Delete the ICanvas* part in the IFrameWindow*.

6 Add an IMultiCellCanvas® part to the IFrameWindow™.

Chapter 7. Creating Visual Parts 173

APropertyCreateView

Table 15. (Part 2 of 3) Constructing APropertyCreateView Part

Step | Action

7 Open the settings notebook of the IMultiCellCanvas* part and con-
figure it as follows:

0 Number of rows: 4

1 Number of columns: 3
0 Expandable rows: 2, 3
1 Expandable columns: 2

When you set the row 3 to expandable, the ISetCanvas* part that
holds the three push buttons is kept in the bottom of the window
when the view is resized.

8 Switch to the Color page and select the Colors radio button of the
Color selection group box. Then select paleGray in the Color val-
ues drop-down list box. In this way, all controls dropped in the
multicell canvas have a pale gray background. Close the settings
notebook.

9 Add an IInfoArea* part, [] to the IFrameWindow* part. (The ITnfo-
Area® part is located in the Frame extensions category).

10 Add an APropertyView* [J, to cell (2, 2) of the IMultiCellCanvas®
part as shown in Figure 65 on page 173 (Option — Add parts from
the Composition Editor menu).

11 Add an ISetCanvas* part, [§, to cell (4, 2) of the IMultiCellCanvas*
part as shown on Figure 65 on page 173.

12 Add three TPushButton® parts to the ISetCanvas* part and set
their names as follows:

O PushButtonCreate
Q PushButtonCancel
U PushButtonHelp

13 Change the text attribute of the three push buttons as follows:

4 ~Create for PushButtonCreate
A ~Cancel for PushButtonCancel
U ~Help for PushButtonHelp

Notice the use of ~ for the key accelerator.

14 Open the settings notebook of PushButtonHelp and switch to the
Styles page. Set the help radio button to On to turn this regular
push button into a help push button. Set the noPointerFocus radio
button to On to prevent the help push button from getting the
input focus when the user clicks on it. In this way, the application
can display help for the part that has the input focus when the user
clicks the help push button. Close the notebook settings.

174 VisualAge for C++ for 0S/2

APropertyUpdateView

Table 15. (Part 3 of 3) Constructing APropertyCreateView Part

Step | Action

15 Select the ISetCanvas® part and open the Tabbing and Depth
Order dialog box. Define a tabbing group for the three push buttons
as follows (see “Tabbing from One Part to Another” on page 152):

Group Tab Feature

X X PushButtonCreate
X PushButtonCancel
X PushButtonCreate

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 65 on page 173.

Now you can save APropertyCreateView. First, switch to the Class
Editor and fill in the Code generation file group box as follows:

0 C++ header file (hpp): vrpertv.hpp
Q C++ code file (.cpp): vrpertv.epp

Then, save the part.

APropertyUpdateView

APropertyUpdateView (Figure 66) is a composite part that consists of
APropertyView and three push buttons:

0 Update, for updating property information in the database
1 Caneel, for canceling the operation and closing the window
0O Help, for accessing online help (Figure 66)

You build the APropertyUpdateView in the same way you built
APropertyCreateView.

Chapter 7. Creating Visual Parts 175

APropertyUpdateView

176

ddress.

. Description

Cancel f

Figure 66. APropertyUpdateView

To build APropertyUpdateView, follow the step-by-step instructions in
Table 16.

Table 16. (Part 1 of 3) Constructing APropertyUpdateView Part

Step | Action

1 Start Visual Builder from the Property project (select Project —
Visual in the menu bar).

2 From the Visual Builder window, select Part — New... option.

3 Fill in the entry fields as follows:
Field Value
Class name APropertyUpdateView
Description View to update property information in the database
File name VRPROP
Part type visual part
Base class IFrameWindow
Click on the Open push button. An IFrameWindow* part is dis-
played on the free-form surface.

4 Change the IFrameWindow™ part title to Property.

5 Delete the ICanvas* part in the IFrameWindow* part.

6 Add an IMultiCellCanvas* part to the IFrameWindow*.

VisualAge for C++ for OS/2

APropertyUpdateView

Table 16. (Part 2 of 3) Constructing APropertyUpdateView Part

Step

Action

7

Open the settings notebook of the IMultiCellCanvas* part and con-
figure it as follows:

3 Number of rows: 4

2 Number of columns: 3
1 Expandable rows: 2, 3
0 Expandable columns: 2

Switch to the Color page and select the Colors radio button of the
Color selection group box. Then select paleGray in the Color val-
ues drop-down list box. In this way, all controls dropped in the
multicell canvas have a pale gray background. Close the settings
notebooXk.

Add an IInfoArea* part, [}, to the [FrameWindow™ part.

10

Add an APropertyView* part, [J, to cell (2, 2) of the IMultiCell-
Canvas* part as shown in Figure 66 on page 176 (Option — Add
parts from the Composition Editor menu).

11

Add an ISetCanvas* part, [§, to cell (4, 2) of the IMultiCellCanvas*
part as shown on Figure 66 on page 176.

12

Add three IPushButton® parts to the ISetCanvas® part and set
their names as follows:

1 PushButtonUpdate
0 PushButtonCancel
1 PushButtonHelp

13

Change the text attribute of the three push buttons as follows:

2 ~Update for PushButtonUpdate
1 ~Cancel for PushButtonCancel
0 ~Help for PushButtonHelp

Notice the use of ~ for the key accelerator.

14

Open the settings notebook of PushButtonHelp and switch to the
Styles page. Set the help radio button to On. Set the noPointerFo-
cus radio button to On. Close the settings notebook.

Chapter 7. Creating Visual Parts 177

ADeleteDialogView

Table 16. (Part 3 of 3) Constructing APropertyUpdateView Part

Step

Action

15

Select the ISetCanvas* part and open the Tabbing and Depth
Order dialog box. Set the Tab check boxes as follows (see “Tabbing
from One Part to Another” on page 152):

Group Tab Feature

X X PushButtonUpdate
X PushButtonCancel
X PushButtonCreate

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 66 on page 176.

Now you can save APropertyUpdateView. First, switch to the Class
Editor and fill in the Code generation file group box as follows:

Q C++ header file (hpp): vrpupdv.hpp
Q C++ code file (.cpp): vrpupdv.cpp

Then, save the part.

APropertyView and APropertyUpdateView look quite similar; they
differ in their push button labels. Reusing APropertyView saves a lot
of time and brings consistency to the whole application.

ADeleteDialogView

ADeleteDialogView is a simple visual part (Figure 67) that is used
throughout the application. It provides a way of warning users when
they go to delete a record in the database.

Figure 67. ADeleteDialogView

178

VisualAge for C++ for 0S/2

ADeleteDialogView

Because you will reuse this part across different subsystems, do not
embed any Data Access Builder parts. Instead, promote two features:

Q The buttonClickEvent of the OK push button. The part that reuses
ADeleteDialogView needs this promoted feature to know when the
button has been clicked and to perform the appropriate action.

QO The text attribute of the textOfRecord static text control. This pro-
moted feature is used to display, in the dialog box, the identifier of
the record to be deleted (see Table 17 on page 180 and Figure 67
on page 178).

ADeleteDialogView is used as a dialog window. It is not resizable, but
you still have to use the IMultiCellCanvas™ part to make this view
portable across different screen resolutions and different font settings.

Even though this view is not resizable, you must set some rows and
columns of the IMultiCellCanvas*® part to be expandable. In effect,
when running the application under different screen resolutions, this
view is resized to fit the new resolution and the canvas might be a bit
distorted. In setting the outermost columns and rows to be expand-
able, you minimize the distortion.

Tip!

When using a multicell canvas for your view, you can
directly observe the effect of resizing the view in the
Composition Editor and anticipate the appearance of
your view in different resolutions.

Notice that you use an ITconControl part to display an icon in the dia-
log window. The icon displayed is set by updating the DLL name and
resource ID fields in the IIconControl General settings page. Be aware
that an icon is not resized on either a set canvas or a multicell canvas
when the canvas is resized.

In our sample application, you use the ABTICONS.DLL provided with
VisualAge C++. It contains predefined icons that you can use for your
own needs.

If you want to use your own specific icons, you can use Project Smarts
to create a Resource Dynamic Link Library project to build your own
DLL. In the complete application that accompanies this book, we use
our own specific DLL, REALICON.DLL, which you can reuse for your
future applications. To ensure that your application can access either
one of these DLLs, put them in a directory that your LIBPATH accesses
(check the LIBPATH environment variable in your CONFIG.SYS file).

Chapter 7. Creating Visual Parts 179

ADeleteDialogView

To build ADeleteDialogView, follow the step-by-step instructions in
Table 17.

Table 17. (Part 1 of 3) Building ADeleteDialogView

Step Action

1 Start Visual Builder from the Common project (select Project —
Visual in the menu bar).

2 From the Visual Builder window, select Part — New... option.

3 Fill in the entry fields as follows:

Field Value

Class name ADeleteDialogView

Description General purpose delete dialog view
File name VRCOMM

Part type visual part

Base class IFrameWindow

and click on the Open push button. An IFrameWindow* part is
displayed on the free-form surface.

4 Change the IFrameWindow* part title to Delete Record.

5 Open the settings notebook of the IFrameWindow* part and
change the style setting as follows:

Setting Value
dialogBorder On
maximizeButton Off
minimizeButton Off
sizingBorder Off
systemMenu Off

Close the settings notebook. The window turns into a nonresizable
dialog box.

6 Delete the ICanvas* part in the IFrameWindow* part.

7 Add an IMultiCellCanvas* part to the IFrameWindow* part.

8 Open the settings notebook of the IMultiCellCanvas* part and
configure it as follows:

U Number of rows: 7

QO Number of columns: 3

U Expandable rows: 3, 5

U Expandable columns: 1, 3

9 Switch to the Color page and select the Colors radio button of the
Color selection group box. Then select paleGray in the Color val-
ues drop-down list box. Close the settings notebook.

180 VisualAge for C++ for QS/2

ADeleteDialogView

Table 17. (Part 2 of 3) Building ADeleteDialogView

Step

Action

10

Add an ISetCanvas* part, [}, to cell (2, 2) of the IMultiCellCanvas®
part. This set canvas will contain an icon and a static text control
lined up horizontally.

11

Add an IIconControl* to the ISetCanvas* part. (The IIconControl*
part is located in the Data entry category.)

12

Open the settings notebook of the ITconControl* part. Set the DLL
name to abticons and the resource ID to 531. Close the settings
notebook.

13

Add an IStaticText* part to the ISetCanvas* part and change its
label to Delete.

14

Open the settings notebook of the ISetCanvas™ part, set its align-
ment to center (select the middle radio button in the Alignment
group box), and adjust its margin and pad dimensions as follows:

Field Value

Margin Width 0
Margin Height 0
Pad Width 10
Pad Height 0

Close the settings notebook.

15

Add an IStaticText* part to cells (5, 2) of the IMultiCellCanvas*
part and change its label to RecordIdentifier.

16

Open the settings notebook of the RecordIdentifier IStaticText*
part and change the part’s name to RecordID. On the same page,
set the static text alignment to center (select the middle radio but-
ton of the Alignment group box). Close the settings notebook.

17

Promote the text attribute of the RecordID part.

18

Add an IMultiCellCanvas* part, i}, to cell (7, 2) of the IMultiCell-
Canvas* part and configure it as follows:

QO Number of rows: 3

QO Number of columns: 5

Q Expandable rows: none

0O Expandable columns: 1, 3, 5

19

Add two I[PushButton™ parts to cells (2, 2) and (2, 4) of the IMulti-
CellCanvas* part, [}, and change their labels as shown in Figure
67 on page 178.

Chapter 7. Creating Visual Parts

181

APropertySearchResultView

Table 17. (Part 3 of 3) Building ADeleteDialogView

Step Action

20 Change the push button names to PushButtonOK and Push-
ButtonCancel.

21 Promote the buttonClickEvent event of PushbuttonOK.

22 Set PushbuttonOK as the default push button (set defaultButton
to On in the Styles page of the settings notebook).

23 Select the IMultiCellCanvas* part, [, and open the Tabbing and
Depth Order dialog box. Set the Tab check boxes as follows (see
“Tabbing from One Part to Another” on page 152):

Group Tab Feature
X PushButtonOK
X PushButtonCancel

Note: Reverse highlighted letters are keyed to Figure 67 on page 178.

Now you can save ADeleteDialogView. First, switch to the Class Edi-
tor and fill in the Code generation file group box as follows:

Q C++ header file (.hpp): vredelv.hpp
O C++ code file (.cpp): vredelv.cpp

Then, save the part.

APropertySearchResultView

APropertySearchResultView (Figure 68) displays a list of properties
that match the buyer’s criteria. To display these properties in tabular
form, use an IVBContainerControl part, which represents a container
control.

Using a Container

An IVBContainerControl part is a control used to display nonvisual
interface objects. As a container, it shows different views of the objects
it holds:

Text and flowed text view The objects are represented as text in

single (text view) or multiple (flowed text view) col-
umns.

182 VisualAge for C++ for 0S/2

APropertySearchResultView

Name and flowed name view The objects are represented as small
icons followed by text in single (name view) or multi-
ple (flowed name view) columns.

Icon view The objects are represented as icons.

Tree view The objects are represented hierarchically.

Details view The objects are represented as a table, with one row
for each object and a column for each object attribute.

This is the view you use to display the property list
(Figure 68).

Figure 68. APropertySearchResultView

For our sample application, you will use the details view of the Prop_-
ad_log Data Access Builder part. The Prop_ad_log’s attributes are dis-
played in column controls, which are added to the container. The
following attributes are displayed: identifier, state, city, and area. In
addition, you tailor the container by adding an icon of a property.

APropertyResultView is built from an IFrameWindow part. An IMulti-
CellCanvas part is used as the client area in place of the standard
ICanvas part.

You build the view in two steps: First you tailor a container to suit
your needs, then you add five columns to the container and tailor each
of them to display the necessary information (an icon of the property,
the property status, the city, the state, and the area).

To build the container, follow the step-by-step instructions in Table 18.

Table 18. (Part 1 of 2) Building APropertySearchResultView: Building a
Container

Step | Action

1 Start Visual Builder from the Property project (select Project —
Visual in the menu bar).

Chapter 7. Creating Visual Parts 183

APropertySearchResultView

Table 18. (Part 2 of 2) Building APropertySearchResultView: Building a

Container

Step

Action

2

From the Visual Builder window, select Part — New... option.

3

Fill in the entry fields as follows:
Field Value

Class name APropertySearchResultView
Description View of a property list

File name VRPROP

Part type visual part

Base class IFrameWindow

Change the IFrameWindow* part title to Property Search
Result.

Delete the ICanvas* part in the IFrameWindow* part.

Add an IMultiCellCanvas* part to the IFrameWindow* part.

Open the settings notebook of the IMultiCellCanvas* part and con-
figure it as follows:

O Number of columns: 1
O Number of rows: 1

0 Expandable columns: 1
0 Expandable rows: 1

You do not have to add extra rows and columns in the IMultiCell-
Canvas* part, because the container can fill in the entire window
client area.

Add an IVBContainerControl* part to the IMultiCellCanvas* part.
(The IVBContainerControl* part is located in the Lists category.)

Open the settings notebook of the IVBContainerControl* part and
set the following values (Figure 69 on page 185):

Field Value

Subpart name PropertyContainer

Title PROPERTY

Show title selected

Show title separator selected

Title alignment centered

View type showDetailsView

Item type Prop_ad_log*

Text area

Icon #IDynamicLinkLibrary("abticons").loadIcon(106)

Notice that the item type field is filled in with the type of the Data
Access Builder part that maps the PROP_AD LOG table. The con-
tainer is tailored by displaying a “house” icon. This icon will be dis-
played in the icon column that you add later on.

184

VisualAge for C++ for 0S/2

APropertySearchResultView

When you enter the type of the object container, you must be aware of
the object type that the object provider provides. In the sample appli-
cation, the container is filled with the objects in the Data Access
Builder Prop_ad_logManager part. In this sense, Prop_ad log-
Manager constitutes the object provider. As mentioned in Chapter 6,
“Mapping Relational Tables Using Data Access Builder,” on page 127,
we know that Prop_ad_logManager contains an attribute, items, of
type IVSequence<Prop_ad_log*>*. This attribute will be connected by
an attribute-to-attribute connection to the same attribute of the con-
tainer. Thus, the container will hold a sequence of objects of Prop_ad_-
log* type (Figure 69).

showTreelconView
showTreeTextView
showTreeNameView

cLinkLibrary
.

Figure 69. Container General Settings Page

Once the container is set up, you must add container columns to dis-
play the information.

Adding Columns to a Container
The detail view requires that you add a container column to the con-

tainer for each object attribute to be displayed. A container column is
represented by the IContainerColumn* part.

Chapter 7. Creating Visual Parts 185

APropertySearchResultView

You add an IContainerColumn* part to your container by dragging it
from the parts palette and dropping it on the container. Then, you edit
its settings to reflect the information you want to display (Figure 70).

ontainerColumnld |

Subpart name

Heading text
Width

Column definition
2 Use Text attribute sel in the Container

E‘Boling
description
download_timestamp
heating

Apply | Cancel |

Figure 70. Container Column General Settings Page

To add the columns to your container, follow the step-by-step instruc-
tions in Table 19.

Table 19. (Part 1 of 3) Building APropertySearchResultView: Adding
Container Columns

Step | Action

1 Add five IContainerColumn* parts in the IContainerControl* part.
(The IContainerColumn* part is located in the Lists category.)

186 VisualAge for C++ for 0S/2

APropertySearchResultView

Table 19. (Part 2 of 3) Building APropertySearchResultView: Adding

Container Columns

Step

Action

2

Open the settings notebook of the first IContainerColumn* part
and change the fields as follows:

Field Value

Subpart name ContainerColumnicon
Heading text Icon

Width 59

Use Icon attribute set in the container selected

The resource identifier set in the IContainerControl* part is used
to display an icon in this IContainerColumn* part. Switch to the
Styles page and set the verticalSeparator to On. Close the settings
notebook.

Open the settings notebook of the second IContainerColumn* part
and change the fields as follows:

Field Value

Subpart name ContainerColumnld
Heading text Id

Width 59

Use an attribute from the part selected

Attributes property_id

The property identifier is displayed in this column. Switch to the
Styles page and set the horizontalSeparator and verticalSeparator
to On. Close the settings notebook.

Open the settings notebook of the third IContainerColumn* part
and change the fields as follows:

Field Value

Subpart name ContainerColumnState
Heading text State

Width 59

Use an attribute from the part selected

Attributes state

The property state is displayed in this column. Then, switch to the
Styles page and set the horizontalSeparator and verticalSeparator
to On. Close the settings notebook.

Chapter 7. Creating Visual Parts

187

APropertySearchParameterView

Table 19. (Part 3 of 3) Building APropertySearchResultView: Adding
Container Columns

Step Action

5 Open the settings notebook of the fourth IContainerColumn* part
and change the fields as follows:

Field Value

Subpart name ContainerColumnCity
Heading text City

Width 59

Use an attribute from the part selected

Attributes city

The property city is displayed in this column. Then, switch to the
Styles page and set the horizontalSeparator and verticalSeparator
to On. Close the settings notebook.

6 Open the settings notebook of the last IContainerColumn* part
and change the fields as follows:
Field Value
Subpart name ContainerColumnArea
Heading text Area
Width 59
Use an attribute from the part selected
Attributes area

The property area is displayed in this column. Switch to the Styles
page and set the horizontalSeparator and verticalSeparator to On.
Close the settings notebook.

Now you can save APropertySearchResultView. First, switch to the
Class Editor and fill in the Code generation file group box as follows:

0 C++ header file (hpp): vrpsrrsv.hpp
0 C++ code file (.cpp): vrpsrrsv.cpp

Then, save the part.

APropertySearchParameterView

In the Visual Realty application, the user can search properties
according to the buyer’s preferences. As stated in “Requirement Speci-
fications” on page 64, different criteria are taken into account: area,
price range, size range, number of bedrooms, and number of bath-
rooms. The user may choose to search properties using some or all of
these criteria.

188 VisualAge for C++ for 0S/2

APropertySearchParameterView

One way of designing a visual part that enables the user to construct a
search properties clause is to build a part that holds as many input
controls as search criteria and use an ICheckBox part to select or dese-
lect each criterion.

Using Check Box Control

An ICheckBox part is a square box with text that represents the set-
tings choice (Figure 71). A mark in the check box indicates that the
choice is selected. In our case, you use the [CheckBox part instead of
the IRadioButton part because the choices are not mutually exclusive.
For example, if the user wants to search all properties that range in
size from 500 to 2500 square feet, the user first selects the Size check-
box and then enters the size range.

Bl search Property

| isize Range

C} Bedrooms

Figure 71. APropertySearchParameterView

The part is built from an IFrameWindow part. An IMultiCellCanvas*
part is used in the client area to display the parts when the window is
resized. Several ICheckBox* and IEntryField* parts are dropped on
the IMultiCellCanvas. An ISetCanvas* holds three IPushButton*
parts.

The list of areas is displayed in a collection combo-box control:
ICollectionViewComboBox™.

Using Collection Combination-Box Control

An ICollectionViewComboBox part is a control that combines a selec-
tion list and an entry field for collection object choices. This selection
list displays the records of the LIST_AREA table. You will use the
List_areaManager Data Access Builder part to fill in the list. As with
an IVBContainerControl part, the ICollectionViewComboBox part
must be set up to display objects of a specific type. The type is entered

Chapter 7. Creating Visual Parts 189

APropertySearchParameterView

190

in the Item type entry field of the General page in the ICollectionView-
ComboBox part’s settings notebook. The type must be a pointer type of
the part that is displayed in the ICollectionViewComboBox part. In
our case, you must set the type to List_area*.

The ICollectionViewComboBox part combines the behavior of an
IEntryField part with an ICollectionViewListBox part. It behaves sim-
ilarly to the ICollectionViewListBox part (ICollectionViewComboBox
and ICollectionViewListBox parts are also called collection list box).
When an object is added to an ICollectionViewListBox part or an
ICollectionViewComboBox part, the display of its contents is ruled by
its method: IString asString(). This method returns an IString, which
can be the concatenation of several object attributes.

For example, the parts that Data Access Builder generates have an
asString method that returns the concatenation of all of their
attributes, after conversion if necessary, separated by a dot. This is
why, in the first example that you built in Section “Using Data Access
Builder Parts with Visual Builder” on page 136, the ICollectionView-
ListBox part displays each property part as the concatenation of the
property identifier, property size, number of stories, number of bath-
rooms, number of bedrooms, type of cooling, type of heating, and
description text. In our example, the only information displayed by the
asString method of the List_area part is the property area, because it
is the only attribute<of the corresponding relational view. When the
part does not have an asString method, an evasive IVBagse Object is
displayed instead.

You can tailor the information displayed in a collection list box in two
ways:

Q Override the asString method of the part that must be displayed
in the collection list box.

O Override the string generator of the collection list box.

Overriding the asString Method

Each object that you want to display in a collection list box must be
provided with an asString method to get its equivalent IString form. If
an object is already provided with an asString method, you can over-
ride it with your own method by subclassing its corresponding class.
The asString() method need only return an IString object.

The only way to override the asString method of a Data Access Builder
part is to edit the code directly. In effect, you cannot derive a class
from the generated part because you would also change the type of the
items attribute managed by the manager class.

VisualAge for C++ for 0S/2

APropertySearchParameterView

Do not edit the Data Access Builder part directly because you will lose
all of your changes if you generate the code from the same part later.

Back to the small application you developed in Section “Using Data
Access Builder Parts with Visual Builder” on page 136. You can modify
the property code—the code is located in the property.cpp file—as
shown in Figure 72 to have only the property identifiers displayed in
the collection list box.

public: IString Property::asStringl()
{

return IString(Property_idl());
1
)

VA

Figure 72. Overriding the asString Method
Overriding the String Generator of the Collection List Box

You can override the ICollectionViewListBox or the ICollectionView-
ComboBox string generator that customizes the part information to be
displayed. A string generator, IStringGenerator<Element>, is a tem-
plate class that manages the translation of Element objects to their
IString form. It can provide strings for collection elements that are
used in the ICollectionViewListBox part or ICollectionViewComboBox
part.

To use the IStringGenerator, you must define a subclass of the IString-
GeneratorFn<Element> template class and override the pure virtual
function: virtual IString stringFor(Element const& pElement). The
IStringGeneratorFn template class is an abstract base class that
defines the protocol for storing and calling functions that generate
IString objects. Objects of this class represent functions that are called
when the stringFor function is called. The stringFor function accepts
an object reference of the template class type.

It is a good idea to override the string generator of a collection list box
when using the collection list box in tandem with Data Access Builder
parts. In effect, you do not have to edit the scurce code generated by
Data Access Builder to customize the contents of the collection list
box.

To have the property identifiers display in the ICollectionViewListBox
of the sample detailed in Section “Using Data Access Builder Parts

with Visual Builder” on page 136, follow these instructions:

1. Build a new class, IStringGeneratorForPropertyFn, to set a new
IStringGenerator for the ICollectionViewListBox (see Figure 73).

Chapter 7. Creating Visual Parts 191

APropertySearchParameterView

192

Open the settings notebook of the ICollectionViewListBox* part.

3. Switch to the General page and fill in the String generator entry
field with: IStringGenerator<Property*>(new IStringGener-
atorForPropertyFn()).

4. Switch to the Class Editor and, in the Required include files list
box, add the file name where IStringGeneratorForPropertyFn is
defined.

Now you can regenerate the code and compile it.

// Class used to set a new IStringGenerator for a DAX part when
// used with an ICollectionViewListBox

#include <PropertyV.hpp> // DAX generated file.
// Property is the data object

#include <istrgen.hpp> // header file for IStringGenerator class
class IStringGeneratorForPropertyFn :

public IStringGeneratorFn<Property*>
{

public:
IStringGeneratorForPropertyFn() {};
virtual ~IStringGeneratorForPropertyFn() {};

virtual IString stringFor (Property* const& pProperty)
{
// Return the identifier of the property
return pProperty->Property_id() ;
}
}; // IStringGeneratorForPropertyFn

Figure 73. IStringGeneratorForPropertyFn Declaration

To build APropertySearchParameterView, follow the step-by-step
instructions in Table 20.

Table 20. (Part 1 of 5) Building APropertySearchParameterView

Step | Action

1 Start Visual Builder from the Property project (select Project —
Visual in the menu bar).

2 From the Visual Builder window, select Part — New... option.

3 Fill in the entry fields as follows:

Field Value

Class name APropertySearchParameterView
Description View to collect the buyer preferences
File name VRPROP

Part type Visual part

Base class IFrameWindow

Click on the Open push button. An IFrameWindow™ part is dis-
p